

Peter Norberg Consulting, Inc.

Professional Solutions to Professional Problems

P.O. Box 10987 Ferguson, MO 63135-0987 (314) 521-8808

Information and Instruction Manual for
BS0610 (revisions G through M) and BS0710

Stepper Motor Controllers

By
Peter Norberg Consulting, Inc.

Matches GenStepper Firmware Revision 2.18

Copyrights 2002-2008 by Peter Norberg Consulting, Inc. All Rights Reserved.
Authored in the United States of America. Manual published October 31, 2008 7:29 AM

Table Of Contents Page 2

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Table Of Contents

Table Of Contents .. 2

Disclaimer and Revision History ... 6

Product Safety Warnings .. 7

LIFE SUPPORT POLICY .. 7

Introduction and Product Summary ... 8

Notes on the AR-BS0710USB revision HI ESD/Isolated Ground Artwork 9

Short Feature Summary .. 10

Firmware Configuration At Time of Ordering Product .. 11

Default Microstep Size .. 11

Default Stop Rate ... 11

Default Ramp Rate ... 11

Default Auto-Full-Step Rate ... 11

Default Auto-Full-Step Mode .. 11

Default Full-Power Level („S1K‟ jumper removed, or „FUL‟ jumper installed) 12

Default Low-Power Level („S1K‟ jumper installed or „HLF‟ jumper installed) 12

Default Motor Idle Winding Current... 12

Default Limit-Switch Stop Mode ... 12

Default „E‟ mode startup .. 12

Default Double-Current Operation (R1K jumper operation) 13

Configuring Serial Baud Rate ... 13

Disable Slew Inputs .. 13

Hardware Configuration .. 14

Configuring Half-Power Mode (equivalent to the “H” command) 14

Configuring Double Current Mode ... 14

Cooling Requirements ... 14

Power-On (and reset) Defaults ... 15

USB Driver Installation Under Windows for the A-BS0710 unit .. 16

Base Driver Installation Under Windows .. 16

Initial testing of the board after driver installation – TestSerialPorts 17

Adjusting Default COM port properties for best operation 18

TTL Mode of operation .. 19

TTL Input Voltage Levels: Schmitt-Triggered or CMOS .. 19

Input Limit Sensors, lines LY- to LX+ .. 20

Motor Slew Control: Y- to RDY ... 21

Serial Operation .. 22

Serial Commands ... 23

Serial Command Quick Summary .. 23

General Commands .. 23

Table Of Contents Page 3

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Motor Control Configuration ... 23

Motor Selection .. 23

Motor Motion Configuration ... 23

Motor Motion Control .. 23

0-9, +, - – Generate a new VALUE as the parameter for all
FOLLOWING commands ... 24

A – Select the Auto-Full Power Step Rate ... 24

B – Select both motors .. 24

E – Enable or Disable Remote Direct Pulse Control 25

G – Go to position x on the current motor(s) .. 27

H – Operate motors at ½ power .. 28

I – Wait for motor „Idle‟ ... 29

K –Set the "Stop oK" rate ... 29

L – Latch Report: Report current latches, reset latches to 0 29

M – Mark location, or go to marked location. .. 30

O – step mOde – How to update the motor windings 30

P – sloPe (number of steps/second that rate may change) 31

R – Set run Rate target speed for selected motor(s) 32

S – start Slew. .. 33

T – limiT switch control (firmware versions 1.65 and above) 34

V – Verbose mode command synchronization ... 35

W – Set windings power levels on/off mode for selected motor 36

X – Select motor X .. 36

Y – Select motor Y ... 36

Z – Stop current motor. ... 36

! – RESET – all values cleared, all motors set to "free", redefine
microstep. Duplicates Power-On Conditions! ... 37

= – Define current position for the current motor to be 'x', stop the
motor .. 38

? – Report status... 39

other – Ignore, except as "complete value here" 44

More Examples .. 45

Additional notes on Direct TTL Step Control .. 46

Basic Stamp™ Sample Code .. 48

Listing for GENDEMO.BS2 – 9600 Baud, READY line based 49

Listing for GENDEMOSER.BS2 – 9600 baud, serial based 51

Listing for GENSEEKSER.BS2 – 9600 Baud, serial based, complex actions 53

SerTest.exe – Command line control of stepper motors .. 56

StepperBoard.dll – An ActiveX controller for StepperBoard products 57

Board Connections ... 58

Board Size ... 58

Table Of Contents Page 4

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Mounting Requirements .. 58

Connector Signal Pinouts ... 59

SX-Key debugger connector ... 59

TTL Limit Input and Reset .. 60

TTL Motor Direction Slew Control .. 60

Board status and TTL Serial .. 61

RS232 Serial DB9 Female (socket) (A-BS0610) 61

USB-B Serial (A-BS0710) ... 61

Power Connector (labeled here top-to-bottom) And Motor Voltages 62

Calculating Current And Voltage Power Supply Requirements .. 64

1. Determine the individual motor winding current requirements. 64

2. Determine current requirement for actually operating the motor(s) 64

3. Determine the voltage for your motor power supply 65

4. Determine the logic supply requirements .. 65

5. Determine the power supplies you will be using ... 66

Board Jumpers .. 67

Jumper JS – Enables RS232 or USB based serial communications 67

Half-Power Jumper S1K or „HLF– Enables Half-Power Mode 67

Full-Power Jumper „FUL‟– Enables Full-Power Mode .. 67

Double Current Jumper R1K – Enables Double Current Mode 67

PotStepper Jumper(s) - PS-1/NORM/PS-2, or PS and PSD 67

Power Selection Jumper - SS/DS/5VO .. 68

Wiring Your Motor.. 69

Stepping sequence, testing your connection .. 70

Determining Lead Winding Wire Pairs .. 71

Sequence Testing .. 73

Single motor, double current mode of operation .. 75

Wiring a Unipolar motor for double current mode ... 75

Wiring a Bipolar motor for double current mode ... 76

Motor Wiring Examples .. 77

Unipolar Motors .. 77

Jameco 105873 12 Volt, 0.150 Amp/winding, 3.6 deg/step 77

Jameco 151861 5 Volt, 0.55 Amp/winding, 7.5 deg/step 78

Jameco 155432 12 Volt, 0.4 Amp/winding, 2000 g-cm, 1.8 deg/step 78

Jameco 162026 12 Volt, 0.6 Amp/winding, 6000 g-cm, 1.8 deg/step 78

Jameco 169201 24 Volt, 0.3 Amp/winding, 1.8 deg/step 79

Jameco 173180 12 Volt, 0.060 Amp/winding, 0.09 deg/step geared 79

Jameco 174553 12 Volt, 0.6 Amp/winding, 7.5 deg/step 79

Bipolar Motors.. 80

Jameco 117954 5 Volt, 0.8 Amp, 7.5 deg/step .. 80

Table Of Contents Page 5

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Jameco 155459 12 Volt, 0.4 Amp, 2100 g-cm, 1.8 deg/step 81

Jameco 163395 8.4 Volt, 0.28 Amp, 0.9 deg/step 81

Jameco 168831 12 Volt, 1.25 Amp .. 82

Disclaimer and Revision History Page 6

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Disclaimer and Revision History

All of our products are constantly undergoing upgrades and enhancements. Therefore, while
this manual is accurate to the best of our knowledge as of its date of publication, it cannot be
construed as a commitment that future releases will operate identically to this described.
Errors may appear in the documentation; we will correct any mistakes as soon as they are

discovered, and will post the corrections on the web site in a timely manner. Please refer to
the specific manual for the version of the hardware and firmware that you have for the most
accurate information for your product.

This manual describes artwork BS0610G through BS0610M, and the BS0710 revisions A
through C. The firmware release described is GenStepper version 2.18. The manual version
shown on the front page normally has the same value as the associated GenStepper version.

If no manual has yet been published which matches a given firmware level, then the update is

purely one of internal details; no new features will have been added.

As a short firmware revision history key points, we have:

Version Date Description

2.1 February 20, 2005 Added order-only options for whether limit switch
inputs are “instant” or act like „z‟. Removed
hardware jumper-option for enabling „e‟ mode at
reset; this is now an order option. Removed

2400 baud operation, changed „RDY‟ jumper to
enable double current mode.

 March 31, 2005 Corrected documentation error related to double
current mode: some examples still incorrectly

referred to the old limit-switch technique.

2.2 April 19, 2005 Added order-only option for starting controller up
in „Double Current Mode‟ without the 1K
configuration resistor

2.3 May 14, 2005 Internal change for ease of assembly; no feature
changes

2.5 March 15, 2006 Added BS0710 (USB) notes, as well as new
layout under artwork version M for BS0610

2.9 July 14, 2006 Added option for TTL-control of motor current
during step-and-direction mode of operation

2.10 July 25, 2006 Added order-only option for power-on S1K
selection of baud rate, as „Dual Baud Rate‟

feature, which replaces option of selection of
motor current feature at power on if requested.

2.12 July 30, 2006 Cleanup of step-and-direction power options

2.13 October 23, 2006 Adjusted code for more robust detection of S1K
jumper on USB products

 December 14,
2006

Corrected error in manual which incorrectly
associated the „R1K‟ jumper with baud rate
selection

2.15/2.16 February 1, 2007 Noted firmware version support at 2.15/2.16

 March 19, 2007 Vista notes: Changed installation path to be
„StepperBoard‟ in the „Program Files‟ directory,
adjusted USB notes.

 April 30, 2007 Added notes on the BS0710 Revision GR artwork

 July 11, 2008 Added notes on the BS0710 revision HI artwork

2.17 July 17, 2008 Corrected firmware error introduced in version

2.9; the „NXT‟ ttl input was not being correctly
monitored, so the manual mode of TTL-based
rate switching did not work

2.18 October 31, 2008 Improved serial resynchronization after bad serial
data reception

Product Safety Warnings Page 7

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

The microstep functionality is generated by a PWM (Pulse-Width-Modified)-like algorithm, and
is non-feedback based. Although the software has a demonstrated maximum resolution of
1/64th of a full-step, in practice most inexpensive stepping motors will not reliably produce
unique positions to this level of precision. Mainly, the microstep feature gives you a very

smooth monotonic motor action, with the capability of requesting step rates as slow as 1/64th
of a full step per second. We strongly suggest use of the default 1/16th of a full step microstep
size; this seems to give the best performance on most motors that we tested. Most non-
microstep enabled stepper motors will experience “uneven” step sizes when microstepped
between their normal full step locations; however, the steps are monotonic in the correct
direction, and are usually consistently located for a given position value.

Product Safety Warnings

The BS0610 and BS0710 series of motor controllers have components that can get hot enough

to burn skin if touched, depending on the voltages and currents used in a given application.
Care must always be taken when handling the product to avoid touching these components:

 The 2940 5 volt regulator (located directly beside the DB9 serial connector,
flanked by tall electrolytic capacitors)

 The two SN754410 power drivers (both located near the center of the board)

 The PCB board under the SN754410 power drivers and under the 2940 regulator

Always allow adequate time for the board to “cool down” after use, and fully disconnect it from
any power supply before handling it.

The board itself must not be placed near any flammable item, as it can generate heat.

Note also that the product is not protected against static electricity. Its components can be

damaged simply by touching the board when you have a “static charge” built up on your body.
Such damage is not covered under either the satisfaction guarantee or the product warranty.
Please be certain to safely “discharge” yourself before handling any of the boards or

components.

If you attempt to use the product to drive motors that are higher current or voltage than the
rated capacity of the given board, then product failure will result. It is quite possible for
motors to spin out of control under some combinations of voltage or current overload.
Additionally, many motors can become extremely hot during standard usage – some motors
are specified to run at 90 to 100 degrees C as their steady-state temperature.

LIFE SUPPORT POLICY

Due to the components used in the products (such as National Semiconductor Corporation,

and others), Peter Norberg Consulting, Inc.'s products are not authorized for use in life
support devices or systems, or in devices which can cause any form of personal injury if a
failure occurred.

Note that National Semiconductor states "Life support devices or systems are devices which
(a) are intended for surgical implant within the body, or (b) support or sustain life, and in
whose failure to perform when properly used in accordance with instructions or use provided

in the labeling, can be reasonably expected to result in a significant injury to the user". For a
more detailed set of such policies, please contact National Semiconductor Corporation.

Introduction and Product Summary Page 8

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Introduction and Product Summary

Please review the separate “First Use” manual before operating your stepper controller for
the first time. That manual guides you through a series of tests that will allow you to get your
product operating in the shortest amount of time.

The BS0610 and BS0710 microstepping motor controllers from Peter Norberg Consulting,

Inc., has the following general performance specifications:

Unipolar Motor Yes

Bipolar Motor Yes

Maximum Motor supply voltage (Vx and

Vy)

34V

Maximum Logic supply voltage (Vc) 15V

Quiescent current (all windings off) 250 mA

Maximum winding current (per motor
winding, requires external fan to
operate)

1.0A

Board size 2.25” x 3.0”

Dual power supply capable Yes

Each board can be controlled simultaneously via its TTL input lines and its 2400 to 9600 baud

serial interface. If the TTL inputs are used alone, then simple pan, tilt, and rate of motion are
provided via 5 input switch closures-to-ground; additional lines are used as limit-of-motion
inputs. When operated via the serial interface, full access to the controller‟s extreme range of

stepping rates (1 to 62,500 microsteps per second), slope rates (1 to 62,500 microsteps per
second per second), and various motor motion rules are provided. Additionally, a special
mode may be enabled which allows an external controller to provide its own step pulses,
allowing for up to 62,500 microsteps per second of operation. The boards have a theoretical

microstep resolution of 1/64 of a full step, and use a constant-torque algorithm when
operating in microstep mode. Please note that, although 1/64th resolution is theoretically
available, most real use should be restricted to 1/16th or 1/8th step due to limitations of the
non-current feedback PWM stepping methodology used by the code.

The boards themselves have the additional feature of containing provision for in-circuit
reprogramming of the Ubicom (Scenix) SX28 chip that is being used as the controller. The
Parallax, Inc.tm SX-Key1 may be used to perform in-circuit reprogramming and debugging of

software. Note that such action would void the warranty of the product. This
capability is provided as a convenience for those who would like to run different devices (such

as three or four phase bipolar steppers) or use different procedures than those for which the
product was intended.

1 Note: SX-Key is a copyrighted product by Parallax, Inc. Please go to their web site at
www.parallaxinc.com for more information about this device.

http://www.parallaxinc.com/

Introduction and Product Summary Page 9

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Notes on the AR-BS0710USB revision HI ESD/Isolated Ground Artwork

The AR-BS0710USB artwork revisions HI and later have additional circuitry not present in any
of our earlier models. This circuitry provides for some ESD protection to most of the TTL input
signals (except for the RST „reset‟ input line), as well as for isolation of the USB signals from
the rest of the board, to avoid potential ground loops.

The ESD protection consists of special protection diodes connected between most of the TTL

input signals and the board ground. This means that the protection only works if the board
ground (the GND signals on the PWR connector) is connected to a power supply that can
absorb the ESD event. If the board is not connected to a power supply, or if the supply does
not redirect the GND to real earth ground, then the board ESD protection may not be
adequate.

 The signals that are ESD protected are:

 LIM: LY-, LY+, LX-, LX+

 SLEW: Y-, Y+, X-, X+

 IO: NXT, RDY, SI, SO

 USB: All signals

The USB signals are also now digitally isolated from the rest of the board. This means that
there is no longer a potential for a ground loop to occur between the power supplies that you
use to power the motors and the computer – they are fully isolated from each other.

Introduction and Product Summary Page 10

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Short Feature Summary

 One or two stepper motors may be independently controlled at one time.

 Each motor may be either Unipolar or Bipolar.

 Each motor may draw up to 1.0 amps/winding. Note that an external cooling fan
must be used when your motor draw exceeds 0.4 amps.

 If only a single motor is connected to the board, then you can configure the board
to operate in DOUBLE POWER mode. This allows the board to operate a single
motor at twice the rated current for the board. For example, the BS0610 1 amp
product can operate a single 2 amp motor, when this feature is enabled (assuming
that the board is adequately cooled).

 Limit switches may optionally be used to automatically request motion stop of
either motor in either direction.

 Rates of 1 to 62,500 microsteps per second are supported.

 Step rates are changed by linearly ramping the rates. The rate of change is
independently programmed for each motor, and can be from 1 to 62,500
microsteps per second per second.

 All motor coordinates and rates are always expressed in programmable microunits
of up to 1/64th step. Changing stepping modes between half, full and micro-steps

does not change any other value other than which winding pairs may be driven at
the same time, and how the PWM internal software is operated.

 Motor coordinates are maintained as 32 bit signed values, and thus have a range
of -2,147,483,647 through +2,147,483,647.

 Both GoTo and Slew actions are fully supported.

 Four modes of stepping the motor are supported:

 Half steps (alternates 1 winding and two windings enabled at a time),

 Full power full steps (2 windings enabled at a time)

 Half power full steps (1 winding enabled at a time)

 Microstep (programmable to as small as 1/64th steps, using a near-constant-
torque PWM algorithm)

 A TTL “busy” signal is available, which can be used to see if the motors are still
moving. This information is also available from the serial connection.

 Simple control of the motors may be done by switch closure. Each motor can be

told to slew left or right, or to stop by grounding the relevant input lines.
Similarly, the rate of motion can be controlled via stepping through a standard set
of rates via grounding another input.

 Complete control of the motors, including total monitoring of current conditions, is
available through the 2400 to 9600 baud serial connection.

 An additional mode is available which allows an external computer to directly

generate step sequences on the motor control lines. Up to 62,500 steps per
second may be requested.

 Runs off of a single user-provided 7.5 to 15 volt DC power supply, or two supplies
(7.5-15V for the logic circuits and 7.5-34V for the motors).

 Any number of motors may be run off of one serial line, when used in conjunction
with one or more SerRoute controllers.

Firmware Configuration At Time of Ordering Product Page 11

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Firmware Configuration At Time of Ordering Product

As of version 1.77, the GenStepper firmware has a set of initial settings that are selected at
power-on or reset that may only be reconfigured at the time the product is ordered. With the
exception of the mode of stepping used when the “Auto-full-step” rate is reached, all of these
features may be reset through use of the appropriate serial command. Note that firmware

version 1.75 uses the “normal” values shown on this page for these features.

Default Microstep Size

Normally, the firmware defaults to a microstep size of 1/16th of a full step (the equivalent
of the “4!” command) at power-on or reset. When you order this firmware from us, you
have the option of setting this to any of the valid values (1/64, 1/32, 1/16, 1/8, ¼, ½ or

full-step).

Default Stop Rate

Normally, the firmware defaults to a stop rate of 80 microsteps per second at power-on or
reset (equivalent to the “80k” serial command). This can be ordered as any valid stop

rate for the system.

Default Ramp Rate

Normally, the firmware defaults to a ramp rate of 8000 microsteps/second/second
(equivalent to the “8000p” command). This can be ordered as any valid ramp rate for
the system.

Default Auto-Full-Step Rate

Normally, the firmware defaults to a rate of 3072 microsteps/second as being the rate at
which it selects the “Auto-Full-Step” mode (equivalent to the „3072A‟ command). This
can be ordered as any rate which is valid for the system.

Default Auto-Full-Step Mode

Our testing of the product shows that once you exceed a given rate (as defined by the
„Auto-Full-Step Rate‟ command/setting), you can obtain more torque from the motors by
switching to simple full-step operation. By default, the “double winding” mode (equivalent
to the “2o” command) is selected when this “Auto-Full-Step” rate is reached, as that has

worked best with the motors that we have tested. However, the mode used may be
defined by you at the time of ordering the product to be any of the modes available from

the “o” command. Please see the “A” command for details about the “Auto-Full-Step”
mode command.

Firmware Configuration At Time of Ordering Product Page 12

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Default Full-Power Level („S1K‟ jumper removed, or „FUL‟ jumper installed)

Normally, we ship the product such that the default code will select full winding current
operation (see the “0H” command) when the board is reset or powered on and the S1K
jumper is removed. At the time of ordering the product, you may change this to operate
in ½ power mode (“1H”) in this case. Please note that firmware versions 2.12 and

earlier may incorrectly act as if S1K is installed even if it is removed, when
operating on an AR-BS0710USB board when the board is not connected to a
powered USB connection. This means that the board may incorrectly configure
itself to operate in ½ power mode after a reset, if the USB system is not being
used.

The BS0710 revision GR artwork replaces the S1K jumper with two jumpers: FUL and HLF.
To operate the board in its full power configuration, place the jumper in the FUL position.

To operate the board in its half power configuration, place the jumper in the HLF position.

The BS0710 revision HI artwork deletes the „FUL‟ jumper, but retains the HLF jumper. To
operate the board in its full power configuration, remove the jumper. To operate the
board in its half power configuration, place the jumper in the HLF position.

Default Low-Power Level („S1K‟ jumper installed or „HLF‟ jumper installed)

As with the Full-Power-Level, we also provide a ½ power level (approximately) if the
S1K/HLF jumper is installed when the board is reset (equivalent to the “1H” command).

You may optionally order this to be the full power level (“0H”) if this is better for your
application.

Note that for both the high and low power level defaults, the actual current level used can

be redefined at any time through use of the “h” command.

The BS0710 revision GR artwork replaces the S1K jumper with two jumpers: FUL and HLF.
To operate the board in its full power configuration, place the jumper in the FUL position.
To operate the board in its half power configuration, place the jumper in the HLF position.

The BS0710 revision HI artwork deletes the „FUL‟ jumper, but retains the HLF jumper. To
operate the board in its full power configuration, remove the jumper. To operate the
board in its half power configuration, place the jumper in the HLF position.

Default Motor Idle Winding Current

Normally, at power on or reset, the motor windings are set to be off (no current supplied)
whenever motion has completed (equivalent to the “0W” command). At the time of

ordering the product from us, you may specify the default idle winding mode to be any of
our valid values (see the “W” command for details).

Default Limit-Switch Stop Mode

Normally, the firmware defaults to treating a limit-switch input as „soft‟; that is to say, the
firmware issues a „z‟ command when a limit is reached. This can be ordered as a „hard‟
stop – the board will INSTANTLY stop the motor when a limit is reached. Note that
damage to gear trains is possible if this option is ordered!

Default „E‟ mode startup

Normally, the firmware defaults starting up with the „e‟ command (direct pulse-step-
control) disabled. When you order your board, you may request any of the legal „e‟ modes

to be enabled upon startup.

Firmware Configuration At Time of Ordering Product Page 13

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Default Double-Current Operation (R1K jumper operation)

Normally, the GenStepper firmware is configured to operate two motors independently of
each other. The „Double Current‟ mode of operation allows one motor to be run at up to
twice the rated current of the board, assuming that everything is connected correctly (see
the later manual section on double current operation). By default, the „Double Current‟

mode is enabled by installing the R1K jumper; however, at the time of ordering, you may
request that this mode be the only way that the controller operates. In this case, the
hardware strap is ignored, and double current mode is permanently enabled.

Configuring Serial Baud Rate

As of version 2.0, by default, all serial communications with the GenStepper firmware
operate at 9600 baud, 8 data bits, 1 stop bit, no parity. If you need to communicate at

2400 or 4800 baud, you must order the board from the factory configured with the
differing baud rate. Note that earlier versions allowed you to program the baud rate via a

jumper option; in version 2.0 that jumper was reassigned.

As of version 2.10, you may special a special option of “DUALBAUD”. This option redefines
the 1K resistor-to-ground on SO to mean “operate at ½ of the standard baud rate”
(instead of „operate at ½ power‟). This allows you to operate the board at either its baud
rate as specified as part of your order (by default this would be 9600), or at ½ of that
baud rate.

Disable Slew Inputs

As of version 2.5 of the firmware, you may order using the “NOSLEW” option. This will
disable use of the SLEW inputs as controls of motor slewing, thus providing you with 4

generic TTL inputs.

Hardware Configuration Page 14

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Hardware Configuration

The GenStepper firmware has two major features that can be configured as startup options.
This means that any combination of these features may be automatically controlled whenever
the firmware receives a power-on, hardware reset, or software reset action. The features are
selected by adding jumpers to the board.

Configuring Half-Power Mode (equivalent to the “H” command)

Half-Power mode allows you to operate motors at higher voltages, while still operating at
their nominal current. This can allow you to either operate motors whose nominal voltage
is otherwise too low for our products, or to force motors to be able to operate at higher
speeds. Determining the correct voltage to use is a non-trivial task; please see
the separate manual “Half Power Notes” for full details about this option before

attempting to use it!

This mode may be configured by installing the S1K jumper which is located near the DB9

(or USB) connector on earlier boards, or by installing the HLF jumper on later artworks.
The hardware selection may be changed at any time through issuing the “1h” or “0h”
commands, as described elsewhere in this manual. However, by operating through use of
this hardware strap, you are much less likely to ever “blow out” a board by failing to issue
the “1h” command after a power-on or reset condition!

Please refer to the manual section “Board status and TTL Serial” for information on where

to find the SO signal.

This hardware strap is available on firmware versions 1.71 and later. As of firmware
version 2.10, this strap may be optionally redefined to mean “operate at ½ of the

standard baud rate”, if requested at the time of the order.

The BS0710 revision GR artwork replaces the S1K jumper with two jumpers: FUL and HLF.
To operate the board in its full power configuration, place the jumper in the FUL position.
To operate the board in its half power configuration, place the jumper in the HLF position.

The BS0710 revision HI artwork deletes the „FUL‟ jumper, but retains the HLF jumper. To
operate the board in its full power configuration, remove the jumper. To operate the
board in its half power configuration, place the jumper in the HLF position.

Configuring Double Current Mode

“Double Current” mode allows the controller to operate a single winding motor at up to
double the rated level of the board (see the manual section “Single motor, double current

mode of operation” for more information about this capability).

You configure the board to operate this way by installing the jumper in location „R1K‟

(located near the DB9 or USB connector).

Please refer to the manual section “Board status and TTL Serial” for information on where
to find the required signals.

Cooling Requirements

If you are operating motors that require more than 600 mA of current per winding, or if
your motor voltage exceeds 15 volts, then you must provide for fan-based cooling of the
board. We suggest at least 8-10 CFM, directed either across the top of the board, or

downward towards the board (so that both the 2940 and the driver chips are in the direct
path of the airflow).

Hardware Configuration Page 15

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Power-On (and reset) Defaults

In addition to the above hardware straps, the board acts at power on (or reset) as if the
following serial commands have been given:

 3072A – Set the Automatic Full Step rate to be >=3072 microsteps/second

 B – Select both motors for the following actions

 0= – Reset both motors to be at location 0

 0H – Set motors to full power mode

 80K – Set the “Stop OK” rate to 80 microsteps/second

 3O – Set the motor windings Order to “microstep”

 8000P – Set the rate of changing the motor speed to 8000
microsteps/second/second

 800R – Set the target run rate for the faster motor to 800 microsteps/second

 0T – Enable all limit switch detection

 1V – Set <CR><LF> sent at start of new command, no transmission delay time

 0W – Full power to motor windings

USB Driver Installation Under Windows for the A-BS0710 unit Page 16

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

USB Driver Installation Under Windows for the A-BS0710 unit

The A-BS0710 boards use a USB driver chip for communications with your hosting computer.
FTDI (http://www.ftdichip.com) provides drivers for operation under Windowstm, Linux, and
Mac/OS. Our installation disk includes modified copies of their Windowstm drivers; our newest
boards use a unique ID code which prevents them from being recognized by the default FTDI

drivers. All Linux and Mac/OS customers must download their drivers directly from the
http://www.ftdichip.com site, as we have no support capability for those platforms. They will
also have to special-order the boards from us such that we configure them to respond to the
standard FTDI drivers. Look for the drivers and documentation that relate to their FT232RL
device.

A short summary of the installation of the drivers under Windows follows. For installation

under Linux or on the Mac, please refer to the FTDI documentation available from their web

site.

Base Driver Installation Under Windows

Installation of the drivers under Windows is fairly straightforward. If you are installing under
Windows Vistatm, you should read our more complete installation instructions as found in our
“FirstUse” document. The key additions to the following list when installing under Vista are
that you must be logged in as an administrator, and Vista will give you several extra
verification prompts in order to confirm that you really want to do this (say „Yes‟).

A short summary of the procedure under XP follows, along with a description of the
adjustments that should be made to the COM emulator port settings after installation has been
completed.

1. Thanks to the “magic” of “Plug-N-Play”, connect the board to your computer (use a
normal USB A-B cable of the appropriate length, connecting the „A‟ side to your
computer USB slot, and the „B‟ side to our board). Make certain that the board is
NOT on any sort of conductive surface (for example, metal, your hand, a

carpet) when you do this, since you could damage the board (or your
computer!) if any of the signals on the board get shorted. Note that you do
NOT need to have the board connected to any external product (such as an actual
motor driver) to install the drivers: just the board and a USB A-B cable are needed, in
addition to your computer with its USB 1.1 or 2.0 connection.

2. If step 1 does not cause Windows to bring of their “Found New Hardware” wizard” or
to otherwise recognize the board, then correctly power the board (see our manual

section “Power Connector” on page 62 which identifies the power connector and

describes the voltages which may be used).

3. This should cause Windows to bring up their “Found New Hardware” wizard, which will
guide you through the installation process.

4. Place our installation CD into your CD drive.

5. If our setup application starts up, cancel out of it

6. Tell the wizard to “search for a suitable driver”, and then tell it to “specify a location”.

7. It will then ask for where to search: tell it to look in the “FtdiStepperBoard” directory
on our support CD.

8. Then tell it to install the driver. If you are installing from the „FtdiStepperBoard‟
version of the drivers, Windows will complain that the drivers are not „Windows

Certified‟. You may ignore the error; all that is different between the „ftdi‟ certified
installation and the „FtdiStepperBoard‟ non-certified installation is that the installation

script sets the communication defaults to our recommended values (below) and
adjusts the list of recognized devices to include our products.

9. The installation may then go through the same process in order to install the virtual
COM drivers (if you have never installed an FTDI USB-based product before). Use the

http://www.ftdichip.com/
http://www.ftdichip.com/
FirstUse.pdf

USB Driver Installation Under Windows for the A-BS0710 unit Page 17

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

same subdirectory and process to install those drivers as were used under step 7,
above.

10. Once that process completes, the code will automatically add a new “COM” serial port
which is “attached” to the board when it is plugged into the any USB port on your

computer. The system will automatically add a new COM port each time you attach a
new board to any USB port on your computer or hub. It may also create a new COM
port if you receive a repaired board back from us (if we have had to replace the USB
driver chip).

Initial testing of the board after driver installation – TestSerialPorts

The easiest way to test the board (and to identify which COM port is being used for board
communications) is to run our “TestSerialPorts” application (found under „StepperBoard‟ on

your „Start‟ menu). This application will scan all of the potential COM ports on your system

(from COM1 through COM255), and will identify every port that has a connected StepperBoard
product powered and attached.

The test assumes that the board is correctly configured to „talk‟ to the com port: in the case of
the A-BS0610 or A-BS0710 board using its on-board serial driver, the „JS‟ jumper must be
installed for the TestSerialPorts application to be able to locate the board.

When TestSerialPorts starts, simply press the “Scan Serial Ports” button (you may safely

ignore the other buttons). The application will then perform its scan, and will identify every
COM port on your system. It will also identify the baud rate for each connected board.

If TestSerialPorts does not locate your board, please contact us for additional tests to perform.
Remember that the board must be connected to your computer and powered on, and the FTDI
USB drivers must be correctly installed (for our USB based boards) for TestSerialPorts to be

able to locate the board).

Please note that the TestSerialPorts application will locate our board even if you have not

adjusted the default USB COM port properties, as described in the next section.

 Page 18

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Adjusting Default COM port properties for best operation

Once the system has created the COM port for the board, you may need to change the system
defaults to match the requirements of our motor controllers. If you installed from the
„FtdiStepperBoard‟ subdirectory, then these changes will normally have been done for you.
Otherwise, you will need to perform the following procedure:

1. Under Windows 2000 or XP, go to your “system properties” page. Do this by

a. Right-click on your “System” icon

b. Select “Properties”

c. Select “Hardware devices” (it might just be called “Hardware”)

d. Select “Device Manager”

2. Under Windows Vista, log in as an administrator, and then get to your “device
manager” page by:

a. Go to your „Start‟ menu, and click on the „Computer‟ button

b. On the ribbon that appears at the top of the resulting window, click on
“System Properties”

c. On the task pane on the left of the new window, click on “Device Manager”

d. The system will ask for your permission to continue. Press the “Continue”
button.

3. Look under “Ports (COM and LPT)”, and select the COM port that you just added (it will
normally be the highest-numbered port on the system, such as “COM6”), and edit its

properties. Note that the „TestSerialPorts‟ application (described in the prior section)
will have identified this COM port for you as part of its report.

4. Reset the default communication rate to:

a. 9600 Baud,

b. No Parity,

c. 1 Stop Bit,

d. 8 Data Bits,

e. No Handshake

5. Select the “Advanced Properties” page, and set the:

a. Read and Write buffer sizes to 64 (from their default of 4096).

b. Latency Timer to 1 millisecond

c. Minimum Read Timeout to 0

d. Minimum Write Timeout to 0

e. Serial Enumerator to checked

f. Serial Printer to unchecked

g. Cancel If Power Off to unchecked

h. Event On Surprise Removal to unchecked

i. Set RTS On Close to unchecked

(that is to say, only the Serial Enumerator is checked in the set of check boxes on the display)

TTL Mode of operation Page 19

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

TTL Mode of operation

The TTL input control method provides for nine input signals and one output signal. TTL based
control operates at the same time as serial control; therefore, any of the actions listed below
may be requested at any time that the board is not in its special “direct computer control”
mode of operation.

All external connections are done via labeled terminal block connections on the left and right
hand sides of the boards, and one RS232 serial port on the “bottom” of the board. All of the
input and control signals are on the left side, while all of the motor and power connections are
on the right side.

TTL Input Voltage Levels: Schmitt-Triggered or CMOS

The input voltage levels which are sensed by the TTL input signals to the boards depend
on the mode of operation of the board.

All TTL input signals are treated as CMOS levels, unless the board is operating in the “1E”

state (“Remote Direct Pulse Control”). This means that a logic “0” is generated at any
time that the input voltage is <= ½ of the board power, and a logic “1” is generated when
the input voltage is above ½ of the board power. Therefore, since our power is 5 volts, a
logic “0” is presented when the input is <= 2.5 volts, and a “1” is presented when the
signal is above 2.5 volts. In reality, we suggest using <=2 volts for a “0”, and >=3 volts
for a “1”, to avoid any “noise” issues. When the board is in the “1E” state, then it

switches to operating as Schmitt-Triggered (for the +/- X and Y inputs), to avoid false-
step actions.

Note also that all of the TTL inputs are internally tied to +5 via a very weak resistor (of the
order of 10-20K). This permits you to use switch-closure-to-board-ground as your method
of generating a “0” to the board, with the “1” being generated by opening the circuit. Do
NOT rely on this resistance value as being valid for a current-based driver: use a voltage-
based input, or a switch closure to ground, for any of our TTL input signals.

TTL Mode of operation Page 20

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Input Limit Sensors, lines LY- to LX+

Lines LY- through LX+ are normally used by the software to request that the motors stop
moving when they reach a hardware-defined positional limit. Enabled by default at power
on, the firmware also supports the „T‟ command, which may be optionally used to enable
or disable any combination of these switches.

The connections are:

Signal Limit Sensed

LY- -Y

LY+ +Y

LX- -X

LX+ +X

The connections may be implemented as momentary switch closures to ground; on the
connector, a ground pin is available near the LY- pin. They are fully TTL compatible;
therefore driving them from some detection circuit (such as an LED sensor) will work. The

lines are “pulled up” to +5V with a very weak (10-20K) resistor, internal to the SX-28
microcontroller.

The stop requested by a limit switch normally is “soft”; that is to say, the motor will start
ramping down to a stop once the limit is reached – it will not stop instantly at the limit
point (unless a special firmware option is ordered). Note that if a very slow ramp rate is
selected (such as changing the speed at only 1 microstep per second per second), it can

take a very large number of steps to stop in extreme circumstances. It is quite important

to know the distance (in microsteps) between limit switch actuation and the hard
mechanical limit of each motorized axis, and to select the rate of stepping (“R”), rate of
changing rates (the slope, “P”), and the stop rate (“K”) appropriately.

As the most extreme example possible:

 if for some insane reason the motor is currently running at its maximum rate of
62,500 microsteps per second,

 and the allowed rate of change of speed is 1 microstep per second per second,

 and the stop rate was set to 1 microstep per second,

 then the total time to stop would be 62,500 seconds (a little over 17.3 hours --

groan!), with a distance of ½ v^2, or ½ (62,500)^2, or 1,953,125,000
microsteps.

 Note that this same amount of time would have been needed to get up to the
62,500 rate to begin with…

Therefore, it is strongly recommended that, if limit switch operation is to be used, these
extremes be avoided. By default, the standard rate of change is initialized to 8000
microsteps/second/second, with the stop rate being set to 80 microsteps/second.

Also note that use of the “!” emergency reset command, or the “1E” followed by “0E”
sequence will cause an immediate stop of the motor, regardless of any other actions or
settings in the system. Please be aware that, in some designs, damage to gear
systems can result when such a sudden stop occurs. Use this feature with care!

Note that as of version 2.0, it is possible to order the firmware configured for “instant
stop” on the limit switches. As with the „!‟ command, if the firmware is configured with
this mode of operation, please be aware that, in some designs, damage to gear
systems can result when such a sudden stop occurs. Use this feature with care!

TTL Mode of operation Page 21

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

 Motor Slew Control: Y- to RDY

Lines Y- through RDY are used to control stepping of the motors, and the rate of steps.
The inputs are designed to operate via a microswitch closure to ground.

The connections are:

Signal Action

Requested

Y- -Y

Y+ +Y

X- -X

X+ +X

NXT Change Rate

RDY Motors Ready

When operated normally, the indicated motor is “slewed” in the requested direction at the
current rate, as long as the indicated signal is at ground level. Illegal combinations (such
as Y- and Y+ both being low at the same time) are treated as “stop”, to avoid confusion.
As with all other operations of the system, each motor is accelerated to the current rate

using the ramp rate defined within the code (which defaults to 4000
microsteps/second/second).

The “Change Rate” action simply selects the “next” rate from its standard internal table of

rates, and sets that rate as the requested rate for both motors. The standard rates
currently provided after power on reset are:

 16 microsteps (1 full step)/second

 40 microsteps (2.5 full steps)/second

 80 microsteps (5 full steps)/second

 160 microsteps (10 full steps)/second

 400 microsteps (25 full steps)/second

 800 microsteps (50 full steps)/second (this is the power-on default)

 1600 microsteps (100 full steps)/second

 4000 microsteps (250 full steps)/second

 8000 microsteps (500 full steps)/second

Be forewarned that there is no way for the software to tell that a motor cannot operate at
a given rate. On power-on, the default microstep is 1/16th of a full step; therefore, the
default rates range from 1 to 500 full steps/second. Changing the microstep size does
change the above real “full step” rates – see the „!‟ command for more details.

FIRMWARE VERSION WARNING: Firmware versions 2.9 through 2.16 did not correctly
support the NXT-based “change rate” action; this feature was re-enabled in firmware

version 2.17.

The RDY output signal is used to indicate that motor motion is still being requested on at
least one of the motors. When HIGH, then all motion is stopped. When LOW, at least

one motor is still moving. This signal is LOW when the system is running under “remote
pulse control” operation.

Serial Operation Page 22

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Serial Operation

The RS-232 (for the BS0610 product) or USB (for the BS0710 product) serial control of the
system allows for full access to all internal features of the system. It operates at 2400 to
9600 baud, no parity, and 1 stop bit. Any command may be directed to the X, Y or both
motors; thus, each motor is fully independently controlled. Note that you should wait about ¼

second after power on or reset to send new commands to the controller; the system does
some initialization processing which can cause it to miss serial characters during this “wake
up” period.

Actual control of the stepper motors is performed independently for each motor. A "goto"
mode is supported, as is a simple "go in a given direction". The code does support ramping of
the stepping rate; however, it does NOT directly support changing the ramp rate, step rate, or
“goto” target while a "goto" is under way. The behavior is either that the motor will first stop

and then perform the new request, or that the new parameter value will be used on the next
action. If button control is performed while a goto is underway, the goto gets changed to a
direction slew, and the state of actions is reset.

Serial input either defines a new current value, or executes a command. The current value
remains unchanged between commands; therefore, the same value may be sent to multiple
commands, by merely specifying the value, then the list of commands. For example,

 1000G

would mean “go to location 1000”

 0G?

would mean “go to location 0, and while that operation was pending, do a diagnostic summary
of all current parameters”.

The firmware actually recognizes and responds each new command about ¼ of the way
through the stop bit of the received character. This means that the command starts being

processed about ¾ bit-intervals before completion of the character bit stream. In most
designs, this will not be a problem; however, since all commands issue an „*‟ upon
completion, and they can also (by default) issue a <CR><LF> pair before starting, it is quite
possible to start receiving data pertaining to the command before the command has been fully
sent! In microprocessor, non-buffering designs (such as with the Parallax, Inc.tm Basic Stamp

tm series of boards), this can be a significant issue. All firmware versions 1.54 and above
handle this via a configurable option in the „V‟ command. If enabled, the code will “send” a

byte of no-data upon receipt of a new command character. This really means that the first
data bit of a response to a command will not occur until at least 7-8 bit intervals after
completion of transmission of the stop bit of that command (about 750 uSeconds at 9600

baud); for the Basic Stamptm this is quite sufficient for it to switch from send mode to receive
mode.

Serial Operation Page 23

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Serial Commands

The serial commands for the system are described in the following sections. The code is case-
insensitive (i.e., “s” means the same thing as “S”). Please be aware that any time any
new input character is received, any pending output (such as the standard “*”
response to a prior command, or the more complex output from a report) is

cancelled. This avoids loss of commands as they are being sent to the control board.

Serial Command Quick Summary

Most of the commands may be preceeded with a number, to set the value for the
command. If no value is given, then the last value seen is used.

General Commands

0-9, +, - – Generate a new VALUE as the parameter for all FOLLOWING commands
L – Latch Report: Report current latches, reset latches to 0

V – Verbose mode command synchronization
! – RESET – all values cleared, all motors set to "free", redefine microstep. Duplicates

Power-On Conditions!
? – Report status

Motor Control Configuration

A – Select the Auto-Full Power Step Rate
E – Enable or Disable Remote Direct Pulse Control
H – Operate motors at ½ power

O – step mOde – How to update the motor windings
T – limiT switch control (firmware versions 1.65 and above)
W – Set windings power levels on/off mode for selected motor

Motor Selection

B – Select both motors
X – Select motor X
Y – Select motor Y

Motor Motion Configuration

K –Set the "Stop oK" rate

P – sloPe (number of steps/second that rate may change)
R – Set run Rate target speed for selected motor(s)

Motor Motion Control

G – Go to position x on the current motor(s)
I – Wait for motor „Idle‟
M – Mark location, or go to marked location
S – start Slew
Z – Stop current motor
= – Define current position for the current motor to be 'x', stop the motor

Serial Operation Page 24

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

0-9, +, - – Generate a new VALUE as the parameter for all FOLLOWING
commands

Possible combinations:

"-" alone – Set '-' seen, set no value yet: used on SLEW -

 "+" alone – Clear '-' seen, set no value yet: used on SLEW+

 -n: Value is treated as -n

n: Value is treated as +n

 +n: Value is treated as +n

Examples:

 -s – Start slew in „-„ direction on the current motor

 -10s – Slew back 10 steps on the current motor

A – Select the Auto-Full Power Step Rate

This sets the approximate rate (expressed in the current microstep resolution; see the “!”
command) at which the system automatically switches to full power to both windings, with

strict full-step mode. This is used once the power loss induced by running at high speed
becomes significant. As of firmware version 1.70, this mode will also disable ½ current
mode (“1H”) once this rate has been reached.

Note that the code only stores the high byte of this value (i.e., the value divided by 256),

and requires that the actual rate divided by 256 be above the value just set. This means
that “A” rates of 0-255 all map into 0, and they set all rates 256 and above to be auto-full

step mode. The code defaults at power-on/reset to A=3072 (“3072a”). When the
rate is “greater” than 3072, then the motor will run in the full-power, full-step mode.
Observe that “A” values of 3072 through 3327 all generate the same test value! When
operating at the default microstep resolution of 1/16th step size, then the 3072 rate maps
into 192 full steps/second. When operating at a microstep resolution of 1/64th step size,
then the same 3072 rate maps into 48 full steps/second.

For example,

 3072A

would set automatic full-power mode to start when the microstep speed exceeds 3072

microsteps/second.

Set this to 62500 to disable this feature.

B – Select both motors

This command selects both the X and Y motors as targets for the following commands.

For example,

 B0?

Would generate a report about all reportable parameters for both motors.

At power on/reset, both motors are selected for actions.

Serial Operation Page 25

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

E – Enable or Disable Remote Direct Pulse Control

This is used to control whether the TTL input lines are used as direct, edge triggered step
requests for their associated motor and direction of travel. The current VALUE is used as
the parameter. The options are bit encoded into the value; the low 2 bits of value define
the main Pulse Control mode, the next 2 bits are extended feature selection, while the

next higher 4 bits control the interpretation of the input signal level. The defined values
for the low 2 bits (0-1) are:

0e – Disable remote pulse control (the power on/reset default). Note that the
entire value must be 0 for remote pulse control to be disabled – if you define
any of bits 2-7 to be non-0, then the code will act as if step mode „1‟ was
selected.

1e – Enable remote pulse control, with each line being its own step/direction

2e – Enable “Step/Direction” mode of direct pulse control: the “-“ inputs are treated as
direction, the “+” inputs are treated as step requests.

As of firmware version 2.9, Bit 2 is used to define whether the limit switch inputs are used
to control the current to the motors. If bit 2 is set (+4), then this extended TTL control of
the motor current is enabled as described later in this section. If bit 2 is clear (+0), then
the limit switches are either ignored or are used as true limits, depending on whether the

firmware was ordered with the “hard stop” option.

Bit 3 is reserved for future expansion, and should be left as 0 at present.

Bits 4-7 are used to control the interpretation of the signal levels. When set to 0 (the
default), then the signals are interpreted as described below. When set to 1, then the

given signal is inverted (i.e., “0” is mapped into “1”, and “1” is mapped into “0”). The net
effect of this is to change the edge which triggers the motion from the low-going edge to
the high-going edge, and to flip (when in mode 2) the interpretation of the direction of

travel.

The bits are encoded as follows:

Bit Value Description

0-1 +0 to +2 Pulse mode to use: 0 means disable,

1 means each line is own step in its own direction,
2 means step-and-direction mode

2 +4 TTL control of motor current

3 * reserved – leave 0

4 +16 Invert Y-

5 +32 Invert Y+

6 +64 Invert X-

7 +128 Invert X+

For example, to operate in the Step/Direction mode of operation, with high-going pulses
requesting the steps on both the X and Y motors, you would use a value of 2+32+128
(since the Y+ and X+ input signals are used as the step requests, and need to be inverted
so that the high-going edge triggers). Therefore, the command given would be “162e”.

On both enable and disable, all pending motor actions are immediately stopped. The
windings on both motors are forced on when remote pulse control is enabled, and are
restored to the status defined by the W command when remote pulse control is disabled.

NOTE THAT:

 THIS COMMAND IS FOR BOTH MOTORS

 IT IMMEDIATELY DISABLES ANY PENDING MOTIONS

 IF ANY MOTION IS UNDER WAY, THAT FACT IS FORGOTTEN. THIS

CAUSES AN INSTANT STOP OF BOTH MOTORS! NO “GRADUAL STOP” (VIA
THE AUTOMATIC RAMP MECHANISM) IS PERFORMED. MOTORS OR GEAR

Serial Operation Page 26

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

TRAINS MAY THUS BE DAMAGED IF THIS IS DONE IMPROPERLY ON SOME
SYSTEMS.

 TTL INPUTS FOR LIMIT SWITCHES ARE ALSO IGNORED DURING THIS
MODE OF OPERATION, UNLESS THE „HARD STOP‟ OPTION IS ORDERED.

 TTL INPUTS ARE TREATED AS “SCHMITT-TRIGGERED” DURING THIS
MODE: <=0.4 Volts is “0”, >=4.6 volts is “1”.

When enabled, then all other motor motion commands (such as G and S) have no effect
(although changing the step mode, marking locations, and setting rates will affect the
stored values for use when remote direct control is disabled). Instead, the TTL input lines
are monitored frequently enough to sense 8 microsecond width pulses, looking for low-
going-edges (leading edges) in the requests. The leading edges are then used to step the

appropriate motor as needed. The stepping actions performed are always in units of the

current microstep size, and are masked based on the current winding control rules (see
the “!” command for how to control the microstep size, and the “O” command for control
of winding/microstepping).

This mode monitors the TTL inputs very closely. It looks for leading (low-going) edges on
each of the 4 TTL input lines (low means TRUE, high means FALSE, for compatibility with

the normal switch mode of input), and issues a single microstep (in the current microstep
precision). The rate of monitoring is such that, if pulses are 8 microseconds wide for each
of the high and low states, they will be correctly sensed. Pulse widths less than 8
microseconds will usually be incorrectly processed! The effective maximum stepping rate
is therefore 16 microseconds per microstep (both motors may be stepped at the same
time), thus providing for a maximum step rate of 62,500 microsteps per second per
motor. Since the maximum microstep rate is ½ full step per microstep, the maximum

rate possible with this form of control is 31,250 full steps per second.

If mode 1 is used, then each input line („x-‟, „x+‟, „y-‟, „y+‟) is independently monitored for
pulse edges, and is used to request a single step in the indicated direction.

If mode 2 is used, then each input line pair is used to control step and direction. „x-‟ and
„y-‟ are used to determine the direction the indicated motor will spin on an associated step
request (low means spin minus, high means spin plus). The „x+‟ and „y+‟ inputs are
monitored for the related step requests: a low-going edge on the indicated line generates

a step request on the associated motor. The restriction of timing is that each direction line
(„x-‟ or „y-‟) must be stable at least 20 ns before the low-going edge of the associated step
line („x+‟ or „y+‟), and must remain stable for at least 8 microseconds.

If the extra feature of “Limit switch control of the motor current” is requested (for example
through the mode of “6E”), then the limit switches are interpreted as follows:

Limit
Switch

Description

LY- High means enable the Y motor, low means disable the Y motor
(that is to say, if LY- is low, the Y motor is off)

LY+ If the Y motor is enabled (LY- is high), then LY+ controls the
motor current used. High means use full current, low means
use ½ current.

LX- High means enable the X motor, low means disable the X motor
(that is to say, if LX- is low, the X motor is off)

LX+ If the X motor is enabled (LX- is high), then LX+ controls the
motor current used. High means use full current, low means

use ½ current.

Serial Operation Page 27

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

G – Go to position x on the current motor(s)

This is used to cause the currently selected motor(s) to travel to the indicated location
(from the current Value). The software will:

 Calculate the direction and distance of travel

 Determine how long it has to „ramp‟ the motor to go from its current start rate to

the standard target rate

 Determine how long it has to then let the motor run at the target stepping rate

 Determine how long it will need to ramp the motor to stop it (which is the same
time as that for starting the motor, above).

 Actually perform the action

The code ALWAYS starts from a stop, due to issues of timing. Therefore, if a “Goto” is
performed while the motor is running, the system will first stop the motor (as in the „Z‟

command), and then restart it based on its then-current location.

For example,

X1000gy-25687g

Would:

1. Select the X motor for actions

2. Start a GOTO on motor X to location 1000

3. Select motor Y for actions

4. Start a GOTO on motor Y to location –25687

Note that the two goto operations continue asynchronously until completed, unless a new
command (such as a stop for that motor, or a change in direction request) is received.
The current location for a given motor may always be requested, through the “-1” report.
For example,

 x-1?

Could report

 X,-1,350

 *

while the motor was still on its way to the requested location.

Serial Operation Page 28

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

H – Operate motors at ½ power

“H” mode may be used to run a motor at a higher-than-rated voltage, in order to improve
its torque. When „H‟ is set to „1‟, then the PWM (Pulse Width Modified) count used to drive
each winding is divided by two, thus cutting the effective current to the motor in half.

The two settings for this are:

0H – Run in normal FULL POWER mode (this is the power on/reset default)

1H – Run in ½ power mode

Note that if the “2W” mode is selected (for leaving windings on at ½ power when motion
ceases), then the windings are actually left at ¼ power during idle. Please review the

separate document “HalfPowerNotes.pdf” for a complete description of correct
use of this capability.

The BS0610 and BS0710 series of boards have a jumper labeled as „S1K‟ which may be

used to automatically select ½ power mode at power on. If it is installed, then the board
will configure itself for ½ power operation; if it is not installed, the board will normally
configure itself for full power operation.

Note, however, that on USB-Powered boards (such as the AR-BS0710USB), firmware
versions prior to 2.13 may incorrectly run in ½ power mode regardless of whether the S1K
jumper is installed. The failure only occurs if you power the board on when it is NOT

connected to your computer via the USB system: if you are using USB, you will normally
get correct operation of the system.

If you are not using USB, and you are experiencing the above problem, then you have 3

options:

1. If you are using TTL-Serial to „talk‟ to the board, simply issue the „0H‟ command at
any time that the board is powered on or reset. This will force the board to
operate in its full power mode, with no other changes to your code.

2. If you are operating the board without any form of serial, but you need it to power
up in full power mode (and it is not), then you can install a 1K resistor between
the SO connector signal and the +5 pin on the programming header near the limit
switch connector. Assuming that you also remove the S1K jumper, this will fully
bypass the issue, and will permit the board to start up in full power mode.

3. You may contact us for an update to version 2.13 or later of the firmware on your
board (which requires you to return the board to us). This will also bypass the

issue.

Serial Operation Page 29

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

I – Wait for motor „Idle‟

This allows your code to „wait‟ for the currently selected motor(s) to (both) be idle. The
code simply waits for either the selected motors to have completed their motion (see the
X, Y, and B commands) or for the next serial character to be received, and then it
transmits the „*‟ prompt (ready for next command). Note that, if the wait is stopped by

receipt of a new character, then the new character IS processed as part of a new
command – it is NOT discarded.

For example, to go to a given X location, and then wait for the motor to actually get there,
you could simply issue the command sequence:

Send Receive

X *

2000G * (note that the „*‟ is received as soon as the motion starts)

I * (note that this „*‟ is not received until the motion completes)

If you send a character before receipt of the final „*‟ (above), then system will discard
transmitting the “*” response if it has not yet started the transmission. It will then
process the new character. The best technique to avoid synchronization worries is to send
two zero characters („00‟), wait for the second one to be completely sent, and then clear
your input buffers. No further characters will be sent from the controller until it sees the

next command after this „flushing‟ action (i.e., any pending data transmissions will be
aborted).

Please note that if your firmware version is before 1.63, then you should have one

“spacing” character (such as motor selection („B‟, „X‟, „Y‟) or a space) before the „I‟, if the
immediately prior character was a “S” or “G” (slew or goto). In those versions, it can take
up to 1 microstep time for the motor to report that it is “busy”. Versions 1.63 and higher
mark the motors as busy as soon as the „S‟ or „G‟ are seen.

K –Set the "Stop oK" rate

This defines the rate at which the motors are considered to be "stopped" for the purposes
of stopping or reversing directions. It defaults to the default of „80‟ if a value of 0 is
given.

By default, this is preset to “80” upon startup of the system. This means that,
whenever a stop is requested, the motor will be treated as “stopped” when its stepping
rate is <= 80 microsteps (5 full steps) per second.

For example,

 100k

sets the stop rates for the currently selected motor(s) to be 100 microsteps per second.
Any time the current rate is less than or equal to 100, the motor will have the ability to
stop instantly.

To set the rate such that the motors always immediately start and stop at the desired rate
(„R‟) setting, issue the command:

 62500K

This sets the „Stop oK‟ rate to the maximum possible step rate, and thus will prevent all

ramping behaviors of the code.

L – Latch Report: Report current latches, reset latches to 0

The “L”atch report allows capture of key short-term states, which may affect external
program logic. It reports the “latched” values of system events, using a binary-encoded
method. Once it has reported a given “event”, it resets the latch for that event to 0, so
that a new “L” command will only report new events since the last “L”.

Serial Operation Page 30

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

The latched events reported are as follows:

Bit Value Description

0 +1 Y- limit reached during a Y- step action

1 +2 Y+ limit reached during a Y+ step action

2 +4 X- limit reached during a X- step action

3 +8 X+ limit reached during a X+ step action

4 +16 System power-on or reset (“!”) has
occurred

For example, after initial power on,

L

Would report

L,16

*

If you were then to do an X seek in the “-“ direction, and you hit an X limit, then the next
“L” command could report:

L,4

*

M – Mark location, or go to marked location.

Based on the current parameter value (x), the M command will either cause the selected
stepper(s) to record its'/their current position as the "marked" point, or will cause the
location to be treated as a "goto" command.

x=0 : Mark current location for a later "go to mark" request

x=1 : Go to last "marked" location

 O – step mOde – How to update the motor windings

The windings of the motors can be updated in one of three ways, depending on this step
mode setting. By default, the code uses “micro step” mode set for 8 steps per complete
full step, and performs a near-constant-torque calculation for positions between full step
locations. The other modes include two full step modes and an alternating mode. For the
full step modes, one enables only 1 winding at a time (low power), while the other enables

2 windings at a time (full power). The remaining mode alternates between 1 and 2
windings enabled.

The values which control this feature are:

 0 : Full Step, Single winding mode (1/2 power full steps)

 1 : Half step mode (alternate single/double windings on – non constant torque)

 2 : Full step, double winding mode (full power full steps)

 3 : Microstep, as fine as 1/8th step, constant-torque mode – This is the
power on/reset default stepping mode.

For example,

 0o

sets the above ½ power full step mode, while

 3o

sets the default microstep mode.

The “o” command does NOT affect the current step rates or locations; it only affects how
the windings are updated. For example, when operating in the 1/8th step size, the
following rules are applied for the various modes.

Serial Operation Page 31

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

 0: Single winding full step mode: Exactly one winding will be on at a time, and
will be on at the selected current for the motor. The “real” physical motor
position (in full step units) therefore only updates once every 8 microsteps; thus
the “full step” location will be the (microstep location)/8, dropping the fractional

part.

 1: Half step mode: Alternates between having one and two windings on at a time,
thus causing the torque to vary at the half-step locations. The “real” physical
locations will be at half-step values, and hence the motor will “move” once every
3 microsteps. The “full step” location will be the (microstep location)/8, with
fractions of 0 to 3/8 mapping into fractional location 0, and 4/8 though 7/8
mapping into fractional location 0.5.

 2: Double winding full step mode: Both windings are “on” (at the selected motor

current) at a time. As with mode 0, the “real” physical motor position will actually
only update once every 8 microsteps. The “full step” location will be the
(microstep location)/8, with the fractional part forced to 0.5.

 3: Microstep mode. The current through the windings are precision-controlled, so
that the microposition can be obtained. The physical motor position expressed in

full step units is the (microstep location/8).

P – sloPe (number of steps/second that rate may change)

This command defines the maximum rate at which the selected motor‟s speed is increased
and decreased. By providing a “slope”, the system allows items which are connected to
the motor to not be “jerked” suddenly, either on stopping or starting. In some
circumstances, the top speed at which the motor will run will be increased by this

capability; in all cases, stress will be lower on gear systems and motor assemblies.

The slope can be specified to be from 1 through 62,500 microsteps per second per second.

If a value of 0 is specified, the code forces it to have a value of 8000. If a value above
62,500 (or less than 0) is specified, the code will accept it, but will ramp unreliably (i.e.,
do not do it!).

This value defaults at power-on or reset to 8000 microsteps per second per
second. Please note that changing this during a "goto" action will cause the stop at the
end of the goto to potentially be too sudden or too slow – it is better to first stop any
“goto” in progress, and then change this slope rate.

For example, if we currently have motor X selected, and it is at location 0, then the
sequence:

 250p500r2000g

would cause the following actual ramp behaviors to occur:

1. The motor would start at its “stop oK” rate, such as 80 microsteps/second

2. It would accelerate to its target rate of 500 microsteps per second, at an

acceleration rate of 250 microsteps/second/second.

3. This phase would last for approximately 500/250 or about 2 seconds, and would
cover about 500 microsteps of distance.

4. It would then stay at the 500 microstep per second target rate until it was about
500 microsteps from its target location, i.e., at location 1500 (which would take
another 2 seconds of time).

5. It would then slow down, again at a rate of 250 microsteps per second, until it

reached the stop oK rate. As with the acceleration phase, this would take about 2
seconds.

6. The total distance traveled would be exactly 2000 microsteps, and the time would
be 2+2+2=6 seconds (actually, very slightly less).

Serial Operation Page 32

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

R – Set run Rate target speed for selected motor(s)

This defines the run-rate to be used for the currently selected motor. It may be specified
to be between 1 and 62,500 microsteps per second. If a value of 0 is specified, the code
forces a value of 400. If a value outside of the limits is specified, then it is accepted, but
the code will not operate reliably. As with the ramP rate, do not specify values outside of

the 1-62,500 legal domain.

This defines the equivalent number of microsteps/second which are to be used to run the
currently selected motor under the GoTo or Slew command. The internal motor position is
updated at this rate, using a sampling interval of 62,500 update tests per second. The
motor windings are then updated according to the stepping mode. For example, if the
stepping mode (the „o‟ command) for a given motor is one of the full-step modes instead

of the microstep mode, and the microstep resolution is set to „1‟, then the motor will

actually experience motion at 1/64th of the specified rate.

For example,

 X250RY1000R

Sets the X motor target stepping rate to 250 microsteps per second, and the Y motor
target rate to 1000 microsteps per second.

The power-on/reset default Rate is 800 microsteps/second.

If you are currently executing a targeted GoTo or Slew command which has a specific
target location (i.e., “2000g” or “-300s”), the new rate will not take effect until the motion
has completed. If you are executing a generic “Slew in a given direction” command (“+s”
or “-s”), the new rate will take effect immediately, and the motor will change its rate to

match the request using the current “P” (ramp-rate) value.

Serial Operation Page 33

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

S – start Slew.

The “S”lew command is used to cause the currently selected motor to go in the selected
direction. If the current value is only “+” or “-” (i.e., just has a sign associated with it),
then the motor will slew in the indicated direction on the selected motor(s). Otherwise,
the motor(s) will go VALUE steps in the direction indicated by the sign of VALUE, after first

stopping the motor (more accurately, will target current location + x, then act as goto).

For example,

 +s

will cause the current motor to start slewing in the forward direction, while

 -250s

will invoke the “relative seek” calculation mode of the firmware.

When doing a relative seek (i.e., “-250s”), the address calculations are normally based on

the current TARGET location, not the current instantaneous location. The actual rules are
as follows:

 1. If the given motor is currently executing a GoTo or relative Seek command, then the
new location is calculated as a delta from the old target. For example,

 Current State:

 Our current location is 1000

 Our current target is 2000

 We are doing a GoTo action

 Request:

 -500s

 Calculation:

 Since we are doing a normal GoTo,

 the new target location will be "2000-500", or 1500

 Result:

 Motor stops, then goes forward to location 1500

 2. Otherwise, the current location is treated as the value to calculate from for the

relative motion. For example,

 Current State:

 Our current location is 1000

 We are executing a "+s" command (slew positive)

 Request:

 -500s

 Calculation:

 Since we are executing a Slew,

 the new target location will be "1000-500", or 500

 Result:

 Motor stops, then goes backward to location 500

This was set up this way as being a reasonable compromise on the intent of the meaning
of "relative". If you want to force the motion to be strictly relative to the current location,
you issue the "z" (stop) command first. Once that has been issued, the motor is placed in
a special state (stopping, no target), which permits relative slew to be from the current
location.

For example, to go -500 steps from the current location, regardless of whether the current
action is a slew or a targeted goto, issue the command:

 z-500s

Serial Operation Page 34

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

T – limiT switch control (firmware versions 1.65 and above)

The limi‟T‟ switch command is used to control interpretation of the board limit switch
input. By default (after power on and after any reset action), the board is
configured to respond to each of the four limit switches; that is to say, all of the
limit switches are enabled. Control of this feature allows the board to more easily

control rotary tables, which may only have an “index” switch instead of a “left and right
limit” switch.

Please note that this capability was introduced in firmware version 1.65. It is not available
in earlier releases of the firmware.

The command takes a bit-encoded parameter, which lists which switches are to be blocked
from action. Note that in version 1.80, the feature of control of the sense levels

for the limit switches was added. The values are:

Note that bits 4-7 (limit switch sense level) are ignored on versions of the firmware before
1.80. For version 1.80 and later, those bits are used to define the input level for the
indicated limit input lines which are used to stop motor motion. A 0 means “use a logic
low to stop”, while a 1 means “use a logic high to stop”. By default, the system uses a
logic low to stop, so that the inputs (which are internally pulled high) will not cause a
motor to stop if they are not connected.

For example,

 4t

would block detection of the “X-” limit, and allow all of the other limits to work as normal.

 240t

would invert the sense of all of the limit input sensors, so that a low means “operate” and
a high means “limit reached”.

Bit Numeric Sum

Value

Action

0 +1 Block Y-

1 +2 Block Y+

2 +4 Block X-

3 +8 Block X+

4 +16 Sense level, LY-

5 +32 Sense level, LY+

6 +64 Sense level, LX-

7 +128 Sense level, LX+

All

other

bits

 Reserved – do not

use

Serial Operation Page 35

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

V – Verbose mode command synchronization

The „V‟erbose command is used to control whether the board transmits a “<CR><LF>”
sequence before it processes a command, and whether a spacing delay is needed before
any command response. By default (after power on and after any reset action), the
board is configured to echo a carriage-return, line-feed sequence to the host as

soon as it recognizes that an incoming character is not part of a numeric value.
This allows host code to fully recognize that a command is being processed; receipt of the
<LF> tells it that the command has started, while receipt of the final “*” states that the
command has completed processing.

The firmware actually recognizes and responds each new command about ½ of the way
through the stop bit of the received character. This means that the command starts being

processed about ½ bit-interval before completion of the character bit stream. In most

designs, this will not be a problem; however, since all commands issue an „*‟ upon
completion, and they can also (by default) issue a <CR><LF> pair before starting, it is
quite possible to start receiving data pertaining to the command before the command has
been fully sent! In microprocessor, non-buffering designs (such as with the Parallax,
Inc.tm Basic Stamp tm series of boards), this can be a significant issue. All firmware
versions 1.54 and above handle this via a configurable option in the „V‟ command. If

enabled, the code will “send” a byte of no-data upon receipt of a new command character.
This really means that the first data bit of a response to a command will not occur until at
least 9 bit intervals after completion of transmission of the stop bit of that command
(about 900 uSeconds at 9600 baud); for the Basic Stamptm this is quite sufficient for it to
switch from send mode to receive mode. Firmware versions 1.60 and later also add 2
additional “stop” bits to each transmitted character, when this feature is enabled. This is

to allow non-buffering microprocessors some additional time to do real-time input

processing of the data.

The verbose command is bit-encoded as follows:

Bit SumValue Use When Set

0 +1 Send <CR><LF> at start of processing a new command

1 +2 Delay about 1 character time before transmission of first
character of any command response. On firmware versions
1.60 and later, add 2 more stop bits to each transmitted

character, to allow more processing time in the receiving
microprocessor.

If you set verbose mode to 0, then the <CR><LF> sequence is not sent. Reports still will

have their embedded <CR><LF> between lines of responses; however, the initial
<CR><LF> which states that the command has started processing will not occur.

For example,

 0v

would block transmission of the <CR><LF> command synch, and could respond before
completion of the last bit of the command, while

 3v

would enable transmission of the <CR><LF>sequence, preceeded by a 1-character delay.
The complete table of options is:

Value Delay First <CR><LF>

0 No No

1 No Yes

2 Yes No

3 Yes Yes

Serial Operation Page 36

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

W – Set windings power levels on/off mode for selected motor

The “W”indings command controls whether the currently selected motor(s) has its
windings left enabled or disabled once any GoTo or Slew action has completed, and it
controls power levels to use during normal stepping. It is acted on immediately – that is
to say, if the current motor(s) is (are) stopped, then the windings are immediately

engaged or disengaged as requested.

The values to use for control are:

0w – Full power during steps, completely off when stepping completed
(default setting)

1w – Full power at all times (both during steps and when idle)

2w – Full power during steps, 50% power when idle

This mode is used to reduce power consumption for the system. When windings are

disengaged, they draw very little power; however, their full rated power is drawn when
they are engaged. If windings are off, then the stepper motor will “relax”, and will move
on its own to a “preferred location”, controlled by its fixed magnets (thus inducing up to ½
step‟s worth of positional error). If they are on, the motor is actively held at its requested
location (and the motor itself heats up). If mode 2 is used (the 50% power setting), then
the windings are pulsed at about ½ of the normal rate, thus the power requirements are

½ of the normal amount for the given location, after a goto or slew has completed.

X – Select motor X

This command selects X motor as the target for the following commands.

For example,

 X100r

Would cause the step rate to be set to 100 for motor X.

Y – Select motor Y

This command selects Y motor as the target for the following commands.

For example,

 Y100r

Would cause the step rate to be set to 100 for motor Y.

Note that if the controller is operating in “single motor dual power” mode, then any
commands sent to the Y motor controller are effectively ignored. Only the X motor
controller sends signals to the X and Y connectors when that mode is enabled.

Z – Stop current motor.

„Z‟ causes the current motor(s) to be ramped to a complete stop, according to its current
ramp rate and stepping rate. “Stopped” is defined as “having a step rate which is <= the

stop oK rate”. See the „K‟ command for defining the “stop oK rate”.

For example,

 Xz

Would slow down, then stop motor X.

Serial Operation Page 37

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

! – RESET – all values cleared, all motors set to "free", redefine microstep.
Duplicates Power-On Conditions!

This command acts like a power-on reset. It IMMEDIATELY stops both motors, and
clears all values back to their power on defaults. No ramping of any form is done – the
stop is immediate, and the motors are left in their “windings disabled” state. This can be
used as an emergency stop, although all location information will be lost.

The value passed is used as the new microstep size, in fixed 1/64th of a full step units. At
raw power on, the board acts like a “4!” has been requested; that is to say, it sets
the microstep size to 4x1/64, which is 1/16th of a full step. By issuing the „!‟ command,
you can redefine the microstep size to a value convenient for your application. The value
must range from 1 to 32; it is clipped to this range if exceeded.

The suggested values would be the powers of 2, vis. 1, 2, 4, 8, 16, 32 and 64 (giving you
true microstep step sizes of 1/64, 1/32, 1/16, 1/8, ¼, ½ and 1 respectively). All other

values (such as RATE or GOTO LOCATION) are then expressed in units of the microstep
size; therefore, location “3” would mean “3/64” in the finest resolution (microstep set to
1), and “3” in the largest resolution (microstep set to 64). Note that the ability to specify
64 started with version 1.75; all earlier versions had an upper limit of 32/64th of a step
(1/2 step) as the largest step size.

For example,

 4!

resets the system to its power on default of 1/16 microstep resolution.

The reset command also selects the following settings:

 3072A – Set the Automatic Full Step rate to be >=3072 microsteps/second

 B – Select both motors for the following actions

 0= – Reset both motors to be at location 0

 0H – Set motors to full power mode

 80K – Set the “Stop OK” rate to 80 microsteps/second

 3O – Set the motor windings Order to “microstep”

 8000P – Set the rate of changing the motor speed to 8000
microsteps/second/second

 800R – Set the target run rate for the faster motor to 800 microsteps/second

 0T – Enable all limit switch detection

 1V – Set <CR><LF> sent at start of new command, no transmission delay time

 0W – Full power to motor windings

Serial Operation Page 38

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

= – Define current position for the current motor to be 'x', stop the motor

This copies the current VALUE as the current position for the selected motors, and then
stops said motor(s). For example,

 X2000=Y4000=

Would define the current location of the X motor to be 2000, and the current location of

the Y motor to be 4000. Note that no actual motor motion is involved – the code simply
defines the current location to be that found in the VALUE register, and issues an
automatic stop („Z‟) request. Note that the motor is stopped AFTER the assignment is
complete, so the actual “current position” of the motor will be different from this value,
depending on how long it takes for the motor to stop.

 X2000=g

Would define the current location of the X motor to be 2000, and then would actually go to

that 2000 location. This combination could be used when the motor is actually slewing or
executing a “goto”, to force the “current” location to be set and selected.

Serial Operation Page 39

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

? – Report status

The “Report Status” command (“?”) can be used to extract detailed information about the
status of either motor, or about internal states of the software.

For a status report, the value is interpreted as from one of three groups:

 1-255: Report memory location 1-255

Useful locations: NOTE THAT ANY LOCATION ABOVE 7 MAY

CHANGE BETWEEN CODE VERSIONS
 5: Port A register – this contains the limit switches
 6: Port B register – this contains the TTL inputs

 7: Port C register – this controls the motor windings

 61: Raw rotor position, Y motor (in 1/64th microstep units)
 125: Raw rotor position, X motor (in 1/64th microstep units)
 252: Automatic full-step rate value/256
 253: Rotor step size, in 1/64th microstep units (see „!‟ command)

0: Report all of the following special reports except for version/copyright

-1 to -12: Do selected one of the following reports
 -1; Report current location
 -2; Report current speed
 -3; Report current slope
 -4; report target position
 -5; Report target speed

 -6; Report windings state

 -7; report stop windings state
 -8; Report step action (i.e., motor state)
 -9; Report step style
 -10; Report run rate
 -11; Report stop rate

 -12; Report current software version and copyright
 other: Treat as 0 (report all except version/copyright)

All of the reports follow a common format, of:

1. If Verbose Mode is on, then a <carriage return><line feed> (“crlf”) pair is sent.

2. The letter corresponding to the motor being reported on is sent (i.e., „X‟ or „Y‟).

3. A comma is sent.

4. The report number is sent (such as –4, for target position).

5. Another comma is sent.

6. The requested value is reported.

7. If this is a report for both the X and the Y motors, then a <crlf> is sent.

8. If this is a report for both motors, the other report is sent.

9. If Verbose Mode is on, then a <crlf> is sent

10. A “*” character is sent.

If both motors are being reported, a line containing the X report is sent, followed by a line

containing the Y report.

Finally, a “*” character is sent, which notifies the caller that the report is complete.

Note that in the following examples, first line of “Received” is “*”. This is because two
commands are actually being sent (i.e., “B”, then “-<whatever>?”), and each command
always generates a “*” response once it has been completed. Technically, fully
“synchronized” serial communication consists of (1) send a command, and (2) save all

Serial Operation Page 40

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

characters until the “*” response is seen. The intervening characters are the results of the
command, although only report (“?”) and reset (“!”) generate any significant response.

The special reports which are understood are as follows:

0: Report all reportable items

The “report all reportable items” mode reports the data as a comma separated
list of values, for reports –1 through –11. Just after power on, for example,
the request of “0?” would generate the report:

 X,0,a,b,c,d,e,f,g,h,I,j,k,l,m

Where:

 X is the motor: such as „X‟ or „Y‟

 0 is the report number; 0 is the „all‟ report

 a is the value for the current location (report “-1”)

 b is the value for the current speed (report “-2”)

 c is the value for the current slope (report “-3”)

 d is the value for the target position (report “-4”)

 e is the value for the target speed (report “-5”)

 f is the value for the windings state (report “-6”)

 g is the value for the stop windings state (report “-7”)

 h is the value for the step action (motor state) (report “-8”)

 i is the value for the step style (both full step modes and half) (report
“-9”)

 j is the run rate (report “-10”)

 k is the stop rate (report “-11”)

For example,

 B0?

Would report all reportable values for both motors. You could receive:

*

X,0,30,10,1000,30,10,0,0,0,1,100,10

Y,0,-300,10,1000,-300,10,0,0,0,1,100,10

*

-1: Report current location

This reports the current (instantaneous) location for the selected motor(s).

For example,

 B-1?

Would report the current location on both motors. You could receive:

*

 X,-1,10

 Y,-1,25443

 *

-2: Report current speed

This reports the current (instantaneous) speed for the selected motor(s).

For example,

 B-2?

Serial Operation Page 41

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Would report the current speed on both motors. You could receive:

*

 X,-2,800

 Y,-2,2502

 *

-3: Report current slope

This reports the current (instantaneous) rate of changing the speed for the
selected motor(s).

For example,

 B-3?

Would report the current rate on both motors. You could receive:

*

 X,-3,10

 Y,-3,25443

 *

-4: Report target position

This reports the target location for the selected motor(s).

For example,

 B-4?

Would report the current target on both motors. You could receive:

*

 X,-4,100

 Y,-4,-35443

 *

-5: Report target speed

This reports the current target run rate which is desired for the selected
motor(s). This value is usually either the current stop rate (we are attempting
to slow down to this speed) or the current requested run rate (as reported by
–10, and as requested by the „R‟ command) depending on whether we are
speeding up or slowing down.

For example,

 B-5?

Would report the target rate on both motors. You could receive:

*

 X,-5,800

 Y,-5,250

 *

-6: Report windings state

This reports the current energized or de-energized state for the windings for
the selected motor(s). A reported value of 0 means “the windings are off”, a
value of 1 means “the windings are energized in some fashion”.

For example,

 B-6?

Would report the current state on both motors. You could receive:

*

 X,-6,1

 Y,-6,0

 *

Serial Operation Page 42

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

-7: Report stop windings state

This reports whether the windings will be left energized when motion
completes for selected motor(s). A reported value of 0 means “the windings
will be turned off”, a reported value of 1 means “the windings will be left at

least partway on”.

For example,

 B-1?

Would report the requested state on both motors. You could receive:

*

 X,-1,1

 Y,-1,0

 *

-8: Report current step action (i.e., motor state)

This reports the current (instantaneous) state for the selected motor(s). The
step action may be one of the following values:

 0: Idle; all motion complete
 1: Ramping up to the target speed, in a "GoTo"

 2: Running at the target speed, in a "GoTo"
 3: Slowing down, from a "GoTo"
 4: Slewing ("+s")
 5: Quick stop in progress ("z", or saw a limit switch closure)
 6: Reversing direction

 7: Stopping in preparation for a new GoTo
 8: Single shot: current action finished (you probably will never see

this; it is only selected for about 8 uSeconds)

For example,

 B-8?

Would report the current location on both motors. You could receive:

*

 X,-8,0

 Y,-8,4

 *

This would mean that motor X is idle, while motor Y is currently doing some
form of slew operation.

-9: Report step style (i.e., micro step, half, full)

This reports the current method of stepping for the selected motor(s). The
legal step styles reported are those of the “O” (step mode) command, vis:

 0: Full step, single windings

 1: Half step, alternating single/double windings

 2: Full step, double windings

 3: Microstep

 +4 added to above: Single Motor Dual Power mode is enabled.

For example,

 B-9?

Would report the current stepping method on both motors. You could receive:

*

 X,-9,3

 Y,-9,2

Serial Operation Page 43

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

 *

This would equate to the X motor being in microstep mode, while the Y motor
is running in full-power, full step mode.

If you were connected in dual power mode, then you could get a report such
as:

*

 X,-9,7

 Y,-9,6

 *

Even though a mode will be reported for the Y motor controller, it is actually

ignored in terms of sending signals to the Y motor connector; only the X motor

controller affects the signals sent to the X and Y connectors when in dual
power mode.

-10: Report run rate

This reports the current requested run rate for the selected motor(s). This is
the last value set by the “R” command.

For example,

 B-10?

Would report the current rate on both motors. You could receive:

*

 X,-10,2000

 Y,-10,3200

 *

-11: Report stop rate

This reports the speed at which the motors may be considered to be stopped,

for starting and stopping activities for the selected motor(s).

For example,

 B-11?

Would report the current stop rate on both motors. You could receive:

*

 X,-11,80

 Y,-11,50

 *

-12: Report current software version and copyright

This reports the software version and copyright.

For example,

 B-12?

could report:

*

genstepper.src $version: 1.48$

Copyright 2002 by Peter Norberg Consulting, Inc. All Rights

Reserved

*

Serial Operation Page 44

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

other – Ignore, except as "complete value here"

Any illegal command is simply ignored, other than sending a response of “*”. However, if
a numeric input was under way, that value will be treated as complete. For example,

 123 456G

would actually request a “GoTo location 456”. Since the “ ” command is illegal, it is

ignored; however, it terminates interpretation of the number which had been started as
123.

Note that, upon completion of ANY command (including the „ignored‟ commands), the
board sends the <carriage return><line feed> pair, followed by the “*” character.

Serial Operation Page 45

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

More Examples

For example,

 Y 1000 R

Would set the Y rate to 1000 steps/second. The spaces are optional, and
would not prevent the code from working; however, an extra “<cr><lf>*”

sequence would be sent by the board for each space seen.

 B50R

Would set both the Y and X rates to 50 steps per second

 300YG

Would go to Y location 300

 800G

Would go to location 800 on the most recent motor (in this example, Y)

 Y-S

Would start slewing in the minus direction on Y motor

 Y+SX3S

Would start slewing positive on Y motor, and would go + 3 steps on the X
motor

 X1SSS

Would step forward 3 steps on the Y motor, since the calculation is based on
the CURRENT TARGET location at the time of the command if the motor is
currently executing a GOTO or relative step slew, and is otherwise based on
the current MOTOR location. This is thus exactly equivalent to

 X3s

 X100rY300RB0g

Would cause the step rate to be set to 100 for motor X, 300 for motor Y, and

then cause both motors to go to location 0.

Additional notes on Direct TTL Step Control Page 46

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Additional notes on Direct TTL Step Control

The „1E‟ command (see the „E‟ command under „Serial Control‟ for complete documentation)
allows a remote controller (another microprocessor, another computer, etc.) to directly
request microsteps going in either direction on either (or both) stepper motor(s). The step
size used is the current microstep size and is masked based on the current winding control

rules (see the “!” command for how to control the microstep size, and the “O” command for
control of winding/microstepping). The sampling rate is such that at most 62,500
microsteps/second may be requested on each motor.

NOTE THAT:

 THIS COMMAND IS FOR BOTH MOTORS

 IT IMMEDIATELY DISABLES ANY PENDING MOTIONS

 IF ANY MOTION IS UNDER WAY, THAT FACT IS FORGOTTEN. THIS

CAUSES AN INSTANT STOP OF BOTH MOTORS! NO “GRADUAL STOP” (VIA
THE AUTOMATIC RAMP MECHANISM) IS PERFORMED. MOTORS OR GEAR
TRAINS MAY THUS BE DAMAGED IF THIS IS DONE IMPROPERLY ON SOME
SYSTEMS.

 TTL INPUTS FOR LIMIT SWITCHES ARE NORMALLY IGNORED DURING
THIS MODE OF OPERATION, UNLESS SPECIAL FIRMWARE OPTIONS ARE

ORDERED OR SPECIAL CURRENT CONTROL REQUESTS ARE MADE.

The TTL input lines which are normally used to request a “slew” of a motor in a given direction
(when low) get redefined to request a “step” of a motor in a given direction when going low.
The wiring thus is:

Signal Action

Requested

Y- -Y microstep

Y+ +Y microstep

X- -X microstep

X+ +X microstep

The code samples the above lines at a rate such that the minimum time low and minimum
time high for each pulse is 8 microseconds (each); shorter pulses may be missed.

A standard sequence to use pulse-based control of the system would thus be:

1. Make certain that the TTL inputs (Y- through X+) are all high.

2. Set up the base microstep size as needed (for example, to step at the
maximum precision, issue a "1!" to reset the controller to 1/64 step).

3. Wait about 1/2 second for the reset to complete.

4. Issue the correct winding control command, if needed (by default, the system
operates in mode "3o", which is the microstep mode).

5. Issue the "1E" command, to enable TTL based remote control.

6. From now on, until the "0E" (or reset) is issued, a "leading-edge-to-zero"
state change on any of the 4 TTL input lines will request a step in the
direction of that line.

 For example, bringing "Y+" low (for at least 5 microseconds) will request a
positive (micro) step on the Y motor. The Y+ line must then be brought back high,

Additional notes on Direct TTL Step Control Page 47

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

for at least 5 microseconds, before a new request is guaranteed to be recognized
on that line.

 A motion may be requested at the same time on both the X and Y motors; illegal
combinations (such as Y- and Y+ both requesting a step at the same time) are

ignored.

 Note that there is no upper limit on how wide this pulse may be; it just has to be
no narrower than 8 microseconds in each direction.

Serial operations which do not request a change in the state of the motor may be processed
while running in the TTL mode of control without loss of pulses or steps; however, doing
commands which change state may cause lost TTL pulses on inputs and skewing of the PWM
signal on outputs.

The following commands will cause up to 16 microseconds of missed TTL control edges during
their processing (hence one or two pulses can theoretically be missed). Due to the fact that
they are only of use when not in remote TTL control mode, they should not be used in that
mode.

 „G‟ – GoTo

 „I‟ – wait for motor Idle (during remote TTL control mode, this command never

completes)

 „M‟ – Mark location

 „P‟ – sloPe rate

 „R‟ – target Rate

 „S‟ – start Slew

 „Z‟ – stop

 „W‟ – winding mode when stopped (windings are normally ON in TTL mode)

The following commands will also cause up to 16 microseconds of missed TTL control edges,
and should therefore be used with care. However, they do affect the behavior of the system
when in remote TTL control mode, and hence may be of use.

 „H‟ – Half power

 „O‟ – step mOde

 „=‟ – set location

 „!‟ – Reset the controller; abort all actions, restart system.

All of the other commands may be used with no negative effects on timing in the system.

Basic Stamp™ Sample Code Page 48

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Basic Stamp™ Sample Code

The StepperBoard series of boards may all be used with the Parallax, Inc.tm Basic Stamp tm

series of boards. The connection to the StepperBoard product is usually via three of the pins
on the J1 connector (READY (B5), SERIN (B6), and SEROUT (B7)), with the MAX232 IC
removed from its socket. The remaining input pins on the J1 set of connectors may be wired

or not, as needed by the application. Most of the time, they will be left unconnected (to
“float”).

Communications between the two boards may be performed either at 9600 baud (the default),
or 2400 baud (via a configuration option). Normally, operating at the 9600 baud rate is
recommended; use the 2400 baud rate only if you cannot make your code work at 9600 baud.
You must use the „V‟erbose command to configure the controller to pause one character time
before sending responses to the Basic Stamp, to avoid data synchronization issues.

The sample code provided by Peter Norberg Consulting, Inc. assumes that the following
connections have been made between the StepperBoard and the Basic Stamp:

 READY (B5) connected to P3

 SERIN (B6) connected to P2

 SEROUT (B7) connected to P1

Some of the code provided operates at 2400 baud. Note that, in reality, all of the code can

run correctly at 9600 baud on most stamps; operation at 2400 baud is shown here just to
demonstrate the technique.

“Gendemo.bs2” is a 9600 baud demo, which uses the READY line for synchronization. It runs
using a microstep size of 4/64 (1/16) of a full-step, and constantly spins both motors between

logical position 2000 and 0. On each “spin cycle”, the stepping mode gets changed; each of
the legal stepping modes (full step 2-winding, full step 1-winding, ½ step, and microstep) are
exercised in sequence, and a 1/5 of a second pause is inserted between each cycle for ease of

visual synchronization.

“Gendemoser.bs2” is a 9600 baud demo, which ignores the “READY” line and uses the SERIAL
input line for all of its synchronization. Aside from operating strictly using the serial
communications interface, it operates identically to “Gendemo.bs2”.

“Genseekser.bs2” is a somewhat more comprehensive example, in terms of showing the
capabilities of the StepperBoard system. As with “Gendemoser.bs2”, this operates at 9600
baud. It operates at the full level of microstep possible (1/64 of a full step), and runs each

motor at a different speed. X is set to a maximum rate of 4000 microsteps/second (which is
4000/64 or 62.5 full steps/second), with a matching ramp rate of 4000

microsteps/second/second. Y is set to a maximum rate of 8000 microsteps/second (which is
125 full steps/second), with a ramp rate of 7000 microsteps/second/second. It also sets the
“automatic full-power” step rate to be 6000 microsteps/second. Given that only Y will exceed
this rate, the Y motor will switch from what ever mode it is using to full power mode during

any seek which goes far enough for it to exceed the 6000 microsteps/second rate. Having
gone through this setup, the loop operates similarly to that in “Gendemoser.bs2”, except that
the locations cycled are +16,000 and 0. If you use this demo with two identical motors, you
should be able to “hear” the difference in the stepping modes, and you should also hear the Y
motor “become noisy” partway through the microstep phase of the entire sequence (when it
switches between microstep mode and full power full step mode).

The complete sources to these examples are installed by default into the “C:\StepperBoard”

directory, when you install the code provided with the product.

Basic Stamp™ Sample Code Page 49

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Listing for GENDEMO.BS2 – 9600 Baud, READY line based
' **

' $modname: gendemo.bs2$

' $nokeywords$

' Demonstrates some of the serial commands using goto and TTL Busy line to the

' SimStep and BiStep

' set of controllers from Peter Norberg Consulting, Inc.

'

' The tool first initializes the stepper to operate at 16 microsteps/full step,

' with the start/stop rate being 80 uSteps/second, and the ramp rate at

' 1000 uSteps/sec/sec.

' The target ramp rate is 1000 uSteps/second;

' The auto-power switch mode (the 'A' command) is left at its default of 3072,

' which is equivalent to 192 full

' steps/second.

'

' Note that both motors are selected for the actions by default.

' It then enters the speed test loop.

'

' The code first waits for the stepper unit to report idle.

' and it is instructed to move to logical location 2000 (in) 1/16th steps.

' (Note that this is full step location 62.5).

' This is then followed by a move to location 0, and then a new stepping mode

' is selected. A 1/5th second pause is inserted to make it easy to identify

' when the cycle is occurring. All three modes of stepping are cycled:

' Mode Use

' 0 Single Winding mode (1/2 power full steps)

' 1 Half step mode (alternate single/double windings on)

' 2 Full step mode (double windings on)

' 3 Microstep mode (full microstep processing; DEFAULT MODE)

'

'

' SPECIAL TIMING NOTE: It can take the SimStep/BiStep up to 100 uSeconds to respond to

' a new serial "go" command (goto or slew); therefore, you must always wait

' a small amount of time (at least a few milliseconds uSecs) before testing the

' "busy" line, since

' you may get a "false idle" response.

'

' Additional note: The SimStep/BiStep products operate at 9600 baud. Although

' the Basic Stamp series can send this rate reliably, many of them cannot receive

' at this rate without data loss; therefore, no attempt is made in this

' sample to receive serial data from the controller.

' **

' {$STAMP BS2}

' SimStep or BiStep connected as follows

' Serial Input P1 to SimStep B7 Serial output

' Serial Output p2 to SimStep B6 Serial Input

' busy p3 to SimStep B5 Status Output

' (HIGH = idle, LOW = motion in progress)

' AND busy NOT connected to 1K resistor to ground (force 9600 baud)

PortStepperSerFrom con 1 ' Serial from stepper port

PortStepperSerTo con 2 ' Serial to stepper port

PortStepperBusy con 3 ' Busy line

PortStepperBaud con 84 ' Baud rate to generate 9600 baud:

 ' Must have no pull-down resistor on busy line!

PortStepperBusyTest var in3 ' Same as PortStepperBusy, used for input test

idMicroStep var byte ' Gets microstep mode; cycles 0 to 3

' Code restarts here if RESET button pressed

 input PortStepperBusy ' BUSY from stepper

 pause 250 ' Wait for stepper power on cycle

 serout PortStepperSerTo,PortStepperBaud,["4!"]

 ' Reset the stepper, set 4/64 full-step step size

Basic Stamp™ Sample Code Page 50

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

 pause 1000

' Wait for stepper to send its wake-up copyright text

 serout PortStepperSerTo,PortStepperBaud,["80K"]

' Set Stop OK to 'can start/stop at 80 microsteps/sec'

 serout PortStepperSerTo,PortStepperBaud,["1000p"]

' For demo purposes, set a slow ramp of 1000 microsteps/sec

 serout PortStepperSerTo,PortStepperBaud,["1000R"]

' For demo purposes, set a target rate of 1000 microsteps/sec

 idMicroStep = 0

' Start at microstep 0

loop:

 serout PortStepperSerTo,PortStepperBaud,[dec idMicroStep,"o"]

' Set microstep mode

 serout PortStepperSerTo,PortStepperBaud,["2000g"]

' Go to location 2000

 gosub WaitReady

' Wait until ready

 serout PortStepperSerTo,PortStepperBaud,["0g"]

' Go back to 0

 idMicroStep = (idMicroStep + 1) & 3

' Cycle step type

 gosub WaitReady ' Wait until ready

 pause 200 ' wait 0.2 seconds before we cycle

 goto loop ' Cycle forever

WaitReady:

 pause 100 ' Wait 0.1 seconds for prior character to be processed

 if PortStepperBusyTest = 0 then WaitReady 'Wait till not busy

 return

Basic Stamp™ Sample Code Page 51

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Listing for GENDEMOSER.BS2 – 9600 baud, serial based
' **

' $modname: gendemoser.bs2$

' $nokeywords$

' Demonstrates some of the serial commands using goto and serial response to

' the SimStep and BiStep

' set of controllers from Peter Norberg Consulting, Inc.

'

' The tool first initializes the stepper to operate at 16 microsteps/full step,

' with the start/stop rate being 80 uSteps/second, and the ramp rate at

' 1000 uSteps/sec/sec.

' The target ramp rate is 1000 uSteps/second;

' The auto-power switch mode (the 'A' command) is left at its default of 3072,

' which is equivalent to 192 full

' steps/second.

'

' Note that both motors are selected for the actions by default.

' It then enters the speed test loop.

'

' The code first waits for the stepper unit to report idle.

' and it is instructed to move to logical location 2000 (in) 1/16th steps.

' (Note that this is full step location 62.5).

' This is then followed by a move to location 0, and then a new stepping mode

' is selected. A 1/5th second pause is inserted to make it easy to identify

' when the cycle is occurring. All three modes of stepping are cycled:

' Mode Use

' 0 Single Winding mode (1/2 power full steps)

' 1 Half step mode (alternate single/double windings on)

' 2 Full step mode (double windings on)

' 3 Microstep mode (full microstep processing; DEFAULT MODE)

'

'

' SPECIAL TIMING NOTE: It can take the SimStep/BiStep up to 100 uSeconds to respond to

' a new serial "go" command (goto or slew); therefore, you must always wait

' a small amount of time (at least a few milliseconds uSecs) before testing the "busy"

' line, since

' you may get a "false idle" response.

'

' Additional note: The SimStep/BiStep products normally operate at 9600 baud.

' Although the Basic Stamp series can send this rate reliably, many of them

' cannot receive at this rate without data loss; therefore, a special patch has

' been made available to the GenStepper versions 1.75 and later, to allow for

' ‘slowing down’ of the response to a command. By issuing the ‘2V’ command, the

' code will wait one complete character time (about 1 millisecond) before sending a

' response; this gives enough time for the stamp to reset for serial input.

' **

' {$STAMP BS2}

' SimStep or BiStep connected as follows

' Serial Input P1 to SimStep B7 Serial output

' Serial Output p2 to SimStep B6 Serial Input

' busy p3 to SimStep B5 Status Output

' (HIGH = idle, LOW = motion in progress)

' AND busy connected to 1K resistor to ground (force 2400 baud)

PortStepperSerFrom con 1 ' Serial from stepper port

PortStepperSerTo con 2 ' Serial to stepper port

PortStepperBusy con 3 ' Busy line

PortStepperBaud con 84 ' Baud rate to generate 9600 baud

PortStepperBusyTest var in3 ' Same as PortStepperBusy, used for input test

idMicroStep var byte ' Gets microstep mode; cycles 0 to 3

'szSerString var byte(2) ' Only used if you enable debug mode (see comments)

' Code restarts here if RESET button pressed

 input PortStepperBusy ' BUSY from stepper

Basic Stamp™ Sample Code Page 52

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

 pause 250

' Wait for stepper power on cycle

 serout PortStepperSerTo,PortStepperBaud,["4!"]

' Reset the stepper, set 4/64 full-step step size

 pause 1000

' Wait for stepper to send its wake-up copyright text

serout PortStepperSerTo,PortStepperBaud,["2V"]

' Set short responses, but add delay before response

 serout PortStepperSerTo,PortStepperBaud,["80K"]

' Set Stop OK to 'can start/stop at 80 microsteps/sec'

 serout PortStepperSerTo,PortStepperBaud,["1000p"]

' For demo purposes, set a slow ramp of 1000 microsteps/sec

 serout PortStepperSerTo,PortStepperBaud,["1000R"]

' For demo purposes, set a target rate of 1000 microsteps/sec

 idMicroStep = 0

' Start at microstep 0

loop:

 serout PortStepperSerTo,PortStepperBaud,[dec idMicroStep,"o"]

' Set microstep mode

 serout PortStepperSerTo,PortStepperBaud,["2000g"]

' Go to location 2000

 gosub WaitReady ' Wait until ready

 serout PortStepperSerTo,PortStepperBaud,["0g"] ' Go back to 0

 idMicroStep = (idMicroStep + 1) & 3 ' Cycle step type

 gosub WaitReady ' Wait until ready

 pause 200 ' wait 0.2 seconds before we cycle

 goto loop ' Cycle forever

WaitReady:

' DEBUG "Waiting..."

 serout PortStepperSerTo,PortStepperBaud,["00I"]

' wait for ready; the leading 0's flush BiStep's output queue

SerIn PortStepperSerFrom,PortStepperBaud,[WAIT("*")] ' And wait for done

' SerIn PortStepperSerFrom,PortStepperBaud,[STR szSerString\1]

' DEBUG "Saw: ", STR szSerString, "[", HEX szSerString(0), "]", CR

 return

Basic Stamp™ Sample Code Page 53

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Listing for GENSEEKSER.BS2 – 9600 Baud, serial based, complex actions
' **

' $modname: genseekser.bs2$

' $nokeywords$

' Demonstrates some of the serial commands using seek and serial response

' to the SimStep and BiStep

' set of controllers from Peter Norberg Consulting, Inc.

'

' The tool first initializes the stepper to operate as follows:

' 64 microsteps/full step,

' start/stop rate being 320 uSteps/second

' ramp rate at 4000 uSteps/sec/sec for the X motor, 7000 uSteps/second for the

' Y motor.

' Auto-power switch mode (the 'A' command) is reset to 6000 uSteps/second

' Target ramp rate is 4000 uSteps/second for X, 8000 uSteps/second for Y

'

' This combination means that the X motor will peak at 1/2 the speed of the Y motor,

' and that the Y motor will switch to full-step full power mode during the midpoint

' of the seek.

' During the microstep pass test (when idMicroStep = 3), you will notice that the

' Y motor

' will start quietly, and then suddenly become noisy for a short period, and then

' it will quiet

' down again. This is occurring when the stepping mode switches from micro to

' full when

' the motor speed is faster than about 6000 uSteps per second.

'

'

' Note that both motors are selected for the seek actions.

' It then enters the speed test loop.

'

' The code first waits for the stepper unit to report idle.

' and it is instructed to move +16000 (in) 1/64th steps.

' (Note that this is full step delta 125).

' This is then followed by a move to location -16000, and then a new stepping mode

' is selected. A 1/5th second pause is inserted to make it easy to identify

' when the cycle is occurring. All three modes of stepping are cycled:

' Mode Use

' 0 Single Winding mode (1/2 power full steps)

' 1 Half step mode (alternate single/double windings on)

' 2 Full step mode (double windings on)

' 3 Microstep mode (full microstep processing; DEFAULT MODE)

'

'

' SPECIAL TIMING NOTE: It can take the SimStep/BiStep up to 100 uSeconds to respond to

' a new serial "go" command (goto or slew); therefore, you must always wait

' a small amount of time (at least a few milliseconds uSecs) before testing the

' "busy" line, since

' you may get a "false idle" response.

'

' Additional note: The SimStep/BiStep products normally operate at 9600 baud.

' Although the Basic Stamp series can send this rate reliably, many of them

' cannot receive at this rate without data loss; therefore, a special patch has

' been made available to the GenStepper versions 1.75 and later, to allow for

' ‘slowing down’ of the response to a command. By issuing the ‘2V’ command, the

' code will wait one complete character time (about 1 millisecond) before sending a

' response; this gives enough time for the stamp to reset for serial input.

'

' Since this is a relative seek on both motors, you can test the limit switches

' easily;

' just ground one of the limit inputs (A0-A3) at a time, and observe which motor stops

' going

' which direction.

'

' Ground Direction

' Line Blocked

' A0 -Y

' A1 +Y

' A2 -X

' A3 +X

'

' **

Basic Stamp™ Sample Code Page 54

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

' {$STAMP BS2}

' SimStep or BiStep connected as follows

' Serial Input P1 to SimStep B7 Serial output

' Serial Output p2 to SimStep B6 Serial Input

' busy p3 to SimStep B5 Status Output

' (HIGH = idle, LOW = motion in progress)

' AND busy connected to 1K resistor to ground (force 2400 baud)

PortStepperSerFrom con 1 ' Serial from stepper port

PortStepperSerTo con 2 ' Serial to stepper port

PortStepperBusy con 3 ' Busy line

PortStepperBaud con 84 ' Baud rate to generate 9600 baud:

PortStepperBusyTest var in3 ' Same as PortStepperBusy, used for input test

idMicroStep var byte ' Gets microstep mode; cycles 0 to 3

'szSerString var byte(2) ' Only used if you enable debug mode (see comments)

' Code restarts here if RESET button pressed

 input PortStepperBusy ' BUSY from stepper

 pause 250

' Wait for stepper power on cycle

 serout PortStepperSerTo,PortStepperBaud,["1!"]

' Reset the stepper, set 1/64 full-step step size

 pause 1000

' Wait for stepper to send its wake-up copyright text

 serout PortStepperSerTo,PortStepperBaud,["2V"]
' Set short responses, but add delay before response

serout PortStepperSerTo,PortStepperBaud,["320K"]

' Set Stop OK to 'can start/stop at 320 microsteps/sec'

 serout PortStepperSerTo,PortStepperBaud,["6000A"]

' Set auto-switch to full power mode to 6000 microsteps/sec;

' only Y will do it

 serout PortStepperSerTo,PortStepperBaud,["X"]

' For demo purposes, Select just X for a moment

 serout PortStepperSerTo,PortStepperBaud,["4000p"]

' For demo purposes, set X slow ramp of 4000 microsteps/sec

 serout PortStepperSerTo,PortStepperBaud,["4000R"]

' For demo purposes, set X target rate of 4000 microsteps/sec

 serout PortStepperSerTo,PortStepperBaud,["Y"]

' For demo purposes, Select just Y for a moment

 serout PortStepperSerTo,PortStepperBaud,["7000p"]

' For demo purposes, set Y faster ramp of 7000 microsteps/sec

 serout PortStepperSerTo,PortStepperBaud,["8000R"]

' For demo purposes, set Y target rate of 8000 microsteps/sec

 serout PortStepperSerTo,PortStepperBaud,["B"]

' For demo purposes, Select both X and Y for remaining actions

 idMicroStep = 0

' Start at microstep 0

loop:

 serout PortStepperSerTo,PortStepperBaud,[dec idMicroStep,"o"]

' Set microstep mode

 serout PortStepperSerTo,PortStepperBaud,["+16000s"]

' Go forward 16000 (real "full step" loc = 16000/64 = 250)

 gosub WaitReady ' Wait until ready

 serout PortStepperSerTo,PortStepperBaud,["-16000s"]

' Go back to 0

 idMicroStep = (idMicroStep + 1) & 3 ' Cycle step type

 gosub WaitReady ' Wait until ready

 pause 200 ' wait 0.2 seconds before we cycle

 goto loop ' Cycle forever

WaitReady:

Basic Stamp™ Sample Code Page 55

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

' DEBUG "Waiting..."

 serout PortStepperSerTo,PortStepperBaud,["00I"]

' wait for ready; the leading 0's flush BiStep's output queue

SerIn PortStepperSerFrom,PortStepperBaud,[WAIT("*")] ' And wait for done

' SerIn PortStepperSerFrom,PortStepperBaud,[STR szSerString\1]

' DEBUG "Saw: ", STR szSerString, "[", HEX szSerString(0), "]", CR

 return

SerTest.exe – Command line control of stepper motors Page 56

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

SerTest.exe – Command line control of stepper motors

The SerTest.exe application (provided as part of the sample software) is a simple tool which
allows command line based control of the StepperBoard product line (the SimStep and BiStep
boards). It allows a batch-based script to control stepper motors, with no further need for
any programming knowledge. All sources are provided, to allow rewriting as needed.

SerTest allows you to send command strings and see their responses, by issuing commands
from the command prompt window. It is called as

SerTest Text1 Text2 … Textn

Where “Text1”, “Text2”, … are the actual strings to send to the controller (as described in the
“Serial Commands” section of this manual). The code supports extended control of its

behavior, by parsing the first character of each space-separated parameter on the command
line – if it starts with “/”, then the rest of that parameter is interpreted as a command to

SerTest, instead of being sent to the controller. The commands recognized by SerTest are:

 /b#### Set Baud rate to ####; defaults to /b9600

For example,

 /b9600 sets 9600 baud,

 /b2400 sets 2400 baud. No other values are useful.

 /i#### Set Idle wait time to #### milliseconds; defaults to /i60000

The “Idle wait time” is the maximum amount of time (in milliseconds) which the

software waits before it decides that a command has timed out, and thus that it is

time to send the next command. This is used to maintain correct synchronization of
the code with the controller. For example,

/i60000 – Set 1 minute before timeout

/i10000 – set 10 seconds before timeout

 /pCOMn set the serial communications port to port n; defaults to /pCOM1

This allows control of which serial port is used for the following commands. The code

does not actually attempt open any serial port until the first real data is ready to be
sent to the controller; thus no attempt will be made to access COM1 if the command
line looks like:

 SerTest /pCOM2 4!x1000g

Note that if multiple /p commands are on the line, the most recent one seen is the one
used at any given time. It is legal to have one command line actually operate multiple

controllers!

All other text is passed, unchanged, to the controller. SerTest is aware of the general
command structure for the StepperBoard product line; thus, it will correctly wait for
synchronization each time a complete command is sent. All data received by SerTest is
echoed back to the command prompt, thus allowing the operator to see the response to any
command (or set of commands).

For example,

 Sertest 4!x1000gy-2000gi

Would:

1. Operate at 9600 baud on COM1 using a 1 minute time out

2. reset the board to operate with a microstep size of 4/64

3. tell the X motor to go to location 1000,

4. tell the y motor to go to location -2000,

 Page 57

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

5. and wait up to 60 seconds for the motions to complete

Similarly,

 SerTest /pCOM2 /b2400 /i10000 y+5000s

Would:

1. Operate using port COM2 at 2400 baud, with a timeout of 10 seconds

2. Tell the Y motor to seek forward 5000 steps

StepperBoard.dll – An ActiveX controller for StepperBoard products

The StepperBoard.dll object is a fairly comprehensive sample Visual Basic COM/ActiveX
application which allows any COM-aware system (such as VBScript based scripts) to easily
control the StepperBoard products. As with the SerTest application, all sources are provided,
so that the user may change the system as needed.

The program is well-documented in the manual StepperBoardClass.pdf. Please refer to that
manual for more information about the product.

StepperBoardClass.pdf

Board Connections Page 58

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Board Connections

An example of the current BS0610G is shown below

 A-BS0610G-PPP A-BS0610M-TTT

 A-BS0710-TTT AR-BS0710G-TTT

Board Size

The boards, oriented as shown on this page, are 3.0 inches high by 2.25 inches wide.

Mounting Requirements

The boards may be mounted using four #4 or #5 machine screws. The holes are 0.125 inches
in diameter, and are positioned exactly 0.125 inches in from each corner. They allow up to a
number 5 screw, which thus allows use of the standard #4 mounting spacers. Vertically, their
centers are 2.75 inches apart, and horizontally they are 2.00 inches apart. Thus, when the
board is positioned as shown above, their positions are:

(0.125, 0.125), (2.125, 0.125),
(0.125, 2.875), (2.125, 2.875)

Board Connections Page 59

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Connector Signal Pinouts

There are eight connectors on each board.

Going from top-left down, we have:

 SX-Key debugger connector (4 pin SIP header)

 SX-28 Direct Access signals:

 TTL Limit Input and RESET (GND, RST, LY- to LX+)

 TTL Motor Direction Slew Control (Y- to X+)

 Board status and TTL Serial (NX, RDY, SI (serial input), SO (serial output)).

Only use the TTL serial if the JS jumper, located near the bottom-left portion
of the board, is removed.

Then, on the bottom we have:

 On the A-BS0610 series, there is a DB9 female connector on the bottom of each

board for RS232. There is also an option to replace the DB9 connector with a 3
pin SIP header.

 On the A-BS0710 series, there is a USB female connector on the bottom of the
board.

Finally, going from top-right down, we have:

 X Motor connector (upper right)

 Y Motor connector (center)

 Power connector (lower right: provides separate motor and logic power)

SX-Key debugger connector

Pin Name Description
1 GND Vss (gnd) for SX-Key

2 +5V +5 for SX-Key

3 OSC2 Oscillator Input 2

4 OSC1 Oscillator Input 1

This connector allows use of the Parallax, Inc.tm SX-Key debugger/programmer product, to
reprogram the SX-28 in place. If the SX-Key is used as a debugging device, then

the resonator (XTL) MUST BE REMOVED, or damage to the SX-Key may occur!

Board Connections Page 60

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

TTL Limit Input and Reset

Name Description
GND Ground reference for inputs – short input to GND to denote

limit

RST Reset the microcontroller, when low

LY- Y Minimum limit reached, when low

LY+ Y Maximum limit reached, when low

LX- X Minimum limit reached, when low

LX+ X Maximum limit reached, when low

This portion (the next 5 pins) of the J1 connector is used to warn the SX-28 that a limit is

being reached in the given direction. The signals are designed to be shorted to GND to
denote that a limit is present; they are also compatible with normal TTL outputs from any
TTL compatible device. LY- through LX+ are internally pulled up to +5 with 10K resistors
(within the SX-28 itself).

TTL Motor Direction Slew Control

Name Description
GND Signal ground

Y- Slew Y Negative

Y+ Slew Y Positive

X- Slew X Negative

X+ Slew X Positive

This connector gives access to the TTL motor direction control signals for the system.

Y- through X+ are inputs, used to control manual slew requests. They each cause the
indicated motor to turn at its current rate in the indicated direction, as long as the
indicated signal is grounded. For example, connecting pin Y- to GND (or providing a low
TTL input signal) will cause the Y motor to go in the “negative” direction.

Board Connections Page 61

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Board status and TTL Serial

Name Description
GND Ground reference for all signals

NXT Go to “next” step rate

RDY Ready/busy output

SI INPUT: Raw SX-28 Serial Input (TTL level)

SO OUTPUT: Raw SX-28 Serial Output (TTL
Level)

This connector gives access to the serial control signals for the SX-28, as well as board
status and slew rates.

NXT is used to select the “next” rate, stepping through a standard list of rates each time
the input is grounded (or is driven low as a TTL input). FIRMWARE VERSION
WARNING: This feature did not work in firmware versions 2.9 through 2.16.

RDY is normally an informational output that describes the state of “one or more motors
are still stepping”. High means READY/IDLE, low means STEPPING.

SI and SO are the “real” serial input and serial output (respectively), as seen by the SX-28

chip. If the application desires direct serial communications without RS232 levels (for
example, if the Parallax Inc.tm Basic Stamp tm based products are being used to control the
board), simply remove the JS jumper (one of the three jumpers near the connector
containing the SI/SO signals) and use these pins.

Note that if this board is a “child” board in a SerRoute controlled tree of boards,

then the JS jumper will normally be removed, unless special interfacing is done.

The communication rate is fixed at 2400 or 9600 baud, no parity, 8 data bits, 1 stop bit.

The communication rate is determined at the factory as an order option: by default, it is
configured for 9600 baud.

RS232 Serial DB9 Female (socket) (A-BS0610)

Name Description
RSO Serial Output – To External Computer Serial

Input

RSI Serial Input – From External Computer Serial
Output

GND Signal Ground

This connector provides for all external serial communications, using the RS232-C
standard. It is directly compatible with a normal male/female DB9 connection to a

computer.

The SIP header option replaces the DB9 connector with a fully labeled MTA-100 connector
for access to the same signals, as well as to the board‟s +5 power.

USB-B Serial (A-BS0710)

On the A-BS0710, there is a standard USB-B female connector for use with a standard
USB-A-B cable to the computer.

Board Connections Page 62

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Power Connector (labeled here top-to-bottom) And Motor Voltages

Name Description

GND Ground for Vm

+Vm 4.5-34 volts, for the X and Y motors

GND Ground for Vc

+Vc Normally configured as +6.5-15 volts for the

logic circuits. This may also be configured as
+5.0 volts, bypassing the onboard regulator

The power connector has two sets of power and ground pins. This is mainly to make it
possible to deliver power to high-voltage motors (i.e., any motor which needs more than
15 volts) while still powering the logic circuit off of its required 7.5 to 15 volts.

There are several ways of powering the system, which are dependent upon the current

and voltage requirements of the system and on the board version. One or two power
supplies may be used, depending upon the voltage needed by the motors and upon
whether extra cooling can be applied to the 2940 voltage regulator. If the motors require
more than 15 volts to operate, using the same power supply to the 2940 will cause
the 2940 to get extremely hot (over 100 deg. C). Although it technically can withstand
temperatures up to 150 deg. C, we do not recommend or warrant it. It is much better in

this case to split the supplies. Use pins 3 (GND) and 4 (+Vc) to provide 6.5 to 15 volts at
300 mA to the 2940 (the lower voltage you use, the better it is from a heat point of view).
Use pins 1 (GND) and 2 (+Vm) to provide the motor power in this case, and SELECT THE
CORRECT POWER SUPPLY JUMPER OPTION DEPENDING ON YOUR BOARD
VERSION. OTHERWISE YOU WILL EITHER BE SHORTING THE POWER SUPPLIES
TOGETHER OR SUPPLYING THE WRONG VOLTAGES TO THE LOGIC CIRCUITS! The

BS0610G and later boards have a 3 position jumper which gives you three options on

powering the system. This jumper is described on the next page of this manual.

5 volt motors may be operated, although the exact voltage being provided to the motor
may be somewhat uncertain. If you use a single power supply, the supply must be 7.5
volts (so that 5 volts will be provided to the logic circuits). In this case, the motor will be
supplied with 5.5-6.4 volts, depending on temperature and particular parts. If you split
the supplies, then the motor supply (pins 2-3) can be “tweaked” to determine the best
voltage for your motor – it will be in the range of 6.1 to 7 volts, assuming that you do not

want to exceed the 5 volt specification for the motor.

Board Connections Page 63

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

The BS0610G and later boards have a 4-pin SIP header positioned beside the power
connector which controls how power is routed to the logic part of the board. The jumper
must be installed in one of the 3 positions shown, SS, DS, or 5VO.

Option Allowed
Motor
Supply

Voltages

Use sep.
Power
supply

Comments

SS 6.5-15V NO Single power supply, connected to pins GND
and Vm of power connector. Note that
connecting power to the Vc will not work – it
is not connected when this jumper is in the SS

position.
DS 4.5-34V YES Use two power supplies, one for the motor

(connected to GND and Vm), the other for the
digital power (GND and Vc). The digital
power should be 6.5 to 15 volts, at least 300
ma. Note that lower voltages for the digital
power are preferred, since they will result in
less waste heat generated by the 2940 power
regulator.

5VO 4.5-34V YES Use two power supplies, one for the motor
(connected to GND and Vm), the other for the
direct digital power (GND and Vc). The digital
power must be exactly 5 volts, at least 300

ma (the on-board regulator is bypassed).

Note that if the voltage exceeds 6 volts,
the board will be permanently damaged.
If it ever drops to 4.2 volts or less, the
firmware will reset and lose all settings.

Note also that if the current requirements are over about 0.6 Amp/winding or if

the motor supply voltage is above 15 volts, then fan-based cooling of the board is
usually required. The driver components can get quite hot, and external cooling
will increase their lifetime considerably!

Fan based cooling should be done such that the bottom and top of the board in the area of
the SN754410 components are exposed to about 8-10 CFM of air flow. A single side-

positioned fan, which directs air over both sides of the board (top and bottom) is usually

the easiest way to achieve this type of flow; however, a top-positioned fan which blows
directly down on the SN754410 components at the 8-10 CFM level will also be fine. Do
not use a fan which blows air away from the board; this is completely ineffective in
terms of cooling the system.

Calculating Current And Voltage Power Supply Requirements Page 64

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Calculating Current And Voltage Power Supply Requirements

This section note describes how to calculate the power requirements for your motors, and for
the system as a whole.

1. Determine the individual motor winding current requirements.

The first issue is to determine the individual winding current requirements for your stepper
motor. Since our system does not monitor current at all (it only estimates current, using

a PWM-like technique), the current ratings as seen by our board may not match those
specified by a manufacturer who is assuming that current-monitoring based control is
being performed.

From the point of view of determining the current requirements for your motor, our
system is best modeled using the standard resistor-only based formula (ignoring
inductance) of:

 V=IR

or, rearranging terms in order to find I,

 I=V/R

That is to say, the current (I) as seen by our board equals the voltage (V) from your
power supply divided by the resistance (R) of your motor windings. This value can be
much greater than that claimed by a given motor manufacturer, since most of them
assume that you are using a current-controlled system to run their motors.

For example, if you have a 3 ohm resistance in your windings, then the motor will "draw"

6/3 or 2 amps if 6 volts is driven out of it, and it will draw 12/3 or 4 amps (per winding!) if
12 volts is generated.

2. Determine current requirement for actually operating the motor(s)

Once you have determined the motor current, then you will need to determine how you
intend to run it via our product offerings. We have four modes of operation, which provide
for three levels of power per motor. These modes are controlled by the "o" command,
which specifies the technique used to drive the windings.

Update Order Absolute
Current

Multiplier

Recommended
Current

Multiplier

0 (single winding full step) 1.0 1.4

1 (half step: alternate 1, 2
windings)

2.0 2.5

2 (full step: 2 windings at a
time)

2.0 2.5

3 (microstep) 1.7 2.3

Note that the “Recommended Current Multiplier” column in the above table includes a
"fudge factor"; we always recommend using a power supply which is somewhat larger

than the absolute minimum required, in order to avoid overloading issues.

Obviously, if you are going to run multiple motors off of one supply, you will need to add
together all of the currents needed in order to determine how large of a supply to use.

For example, if you are going to microstep (mode 3) a motor whose winding current has
been calculated to be 0.4 amps, then your power supply needs to be able to supply 2 x
0.4, or 0.8 amps to drive that particular motor.

Calculating Current And Voltage Power Supply Requirements Page 65

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

3. Determine the voltage for your motor power supply

From the „V=IR‟ formula (step 1, above), you can also derive the voltageyou‟re your
system.

That is to say, the voltage (V) used to drive the motors should be that calculated from
multiplying the desired single-winding current (I) by the resistance (R) of your motor

windings.

For example, if you have a 12 ohm resistance in your windings, and you need to operate it
at 0.5 amps of current, then the motor voltage will be 0.5 * 12, or 6 volts.

4. Determine the logic supply requirements

The logic supply normally requires 300 mA for the BS0610 and BS0710 products. If you

choose to operate a fan off of the on-board 5 volts in order to cool the system, or if you
are going to tap the 5 volts for other external logic, you need to add in the current which
is needed to operate the fan and the external logic. Do not exceed 500 mA! Note also

that if you draw more than 100mA from the board‟s 5 volt supply, you must fan-
cool the board.

The logic supply (+Vc) must always be in the range of 6.5 to 15 volts. If less than 6.5
volts is used, the regulator will not operate reliably (causing the board to reset itself,
losing motor control and position information). If greater than 15 volts is used, you are
likely to „blow out‟ the logic voltage regulator, damaging the board.

Calculating Current And Voltage Power Supply Requirements Page 66

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

5. Determine the power supplies you will be using

Your choices are dependent on the desired voltage to the motors, and on the board which
you have purchased from us. In all cases, we strongly recommend that linear supplies be
used: switching supplies are not very good when used with inductance based loads.

The logic supply must be in the voltage range of 6.5 through 15 volts. If your motor

voltage requirements are outside of this range, then you will have to use a split supply (as
described below) (or exactly 5.0 volts, if the „5VO‟ jumper is installed).

Single Supply.

If your motor power supply voltage is from 6.5 to 15 volts, then you may choose to use a
single supply to operate the system. The current capabilities of the supply must exceed

the sum of the current requirements of the motor(s) and the logic circuits.

Dual Supply

You may separate the motor supply from the logic supply. If you do so, we suggest using
the lowest voltage in the range of 6.5 to 15 volts on the logic supply which you have
available, to reduce generation of waste heat on the board.

The motor supply should be above 4.5 volts in all cases (due to some signal requirements
on the board), and otherwise is as calculated under sections 1 through 3, above. If the
supply is to drive 2 motors, please remember to double the current needs.

Note that when operated in dual supply mode, you may either operate your logic (Vc)
voltage through our on-board voltage regulator, or you may provide exactly 5 volts of
regulated DC to our board. Use of our on-board regulator is strongly encouraged!

The jumper options are “DS” for dual supply, using our on-board regulator, or “5VO” for
dual supply, bypassing our regulator.

 DS: You provide 6.5 to 15 volts DC to the +Vc input

 5VO: You provide 5.0 volts regulated DC to the +Vc input

Note that in the 5VO position, you will damage the board if your supply ever reaches
or exceeds 6 volts, and the board will undergo a reset if the voltage ever drops (even as
a spike) to 4.2 volts.

Board Jumpers Page 67

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Board Jumpers

The BS0610G and later boards have a series of jumpers (which may be hard-wired at the
factory, or may be present as actual 0.1” shorting-plugs) which control various board features.
As shown on the Board Connections page, there are up to 5 primary jumpers available on the
board, which control specific operation of the product. Note that board artwork BS0710G has

redefined the single „S1K‟ jumper to be the two complementary jumpers „FUL‟ and „HLF‟
(exactly one of these jumpers must be installed for correct operation).

Jumper JS – Enables RS232 or USB based serial communications

The JS jumper is located above and to the left of the DB9/USB serial connector, as the top-
most jumper in a set of 3 jumpers. If installed, then RS232/USB communications via the DB9

or USB communications via the USB connector (or their optional MTA-100 replacements) are
enabled. You must NOT use the SI and SO connections when JS is installed, since you will end
up with 2 devices driving the same signal (SI), which can eventually destroy one or both

devices.

If this jumper is removed, then only TTL-Serial communication will work, via the SI and SO
connections.

Half-Power Jumper S1K or „HLF– Enables Half-Power Mode

The S1K/HLF jumper is located just below the JS jumper. If it is installed, then the board will
power-on (and reset) to the ½ power mode of operation. If it is not installed, then the board
will power-on to full power operation.

This jumper is called „HLF‟ on later artworks. If it is called „HLF‟, and if there is also a „FUL‟
position available then exactly one of the two possible jumpers „HLF‟ and „FUL‟ must be
installed in order to have correct firmware operation.

Full-Power Jumper „FUL‟– Enables Full-Power Mode

The „FUL‟ jumper is only available on later artworks (such as the BS0710 artwork revision GR).
If the jumper is not available on your board, then you configure full-power mode by removing
the „S1K‟ jumper, above.

If this jumper is available, then full-power mode is enabled by installing this jumper. Do NOT

have both „HLF‟ and „FUL‟ installed at the same time, as that is not a supported configuration.

Double Current Jumper R1K – Enables Double Current Mode

The R1K jumper is located just below the S1K jumper. If it is installed, then the board will
operate in its special DOUBLE CURRENT mode of operation. Please read the manual sections
describing this feature before enabling it!

PotStepper Jumper(s) - PS-1/NORM/PS-2, or PS and PSD

The PS1/NORM/PS2/PS/PSD jumpers are normally strictly configured at the factory as a hard-
wired feature set of the board.

If your firmware supports the “PotStepper” semantics (PotStepper or RelayStepper firmware),

then this section will be jumpered as is appropriate for support of the firmware which is
installed on your system.

On the A-BS0610G artwork, operation using the GenStepper firmware requires this jumper to
be in the „NORM‟ position.

On the A-BS0610M or A-BS0710 (or later) artworks, the PS and PSD jumpers are not installed
when using the GenStepper firmware.

Board Jumpers Page 68

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Power Selection Jumper - SS/DS/5VO

This jumper is used to select how the board is to be powered. It may be factory hard-wired
(for volume orders), or it will be available as a jumper selection as needed. The options are:

SS Single-Supply operation. You must provide 6.5 to 15 volts at

the Vm/Gnd input. Do not wire to Vc.
DS Dual-Supply, regulator enabled operation. You provide 4.5 to

34 volts at Vm/Gnd for the motor power, and 6.5 to 15 volts
at the Vc/Gnd inputs.

5VO Dual-Supply, regulator disabled operation. You provide 4.5
to 34 volts at Vm/Gnd for the motor power, and 5.0 volts at

the Vc/Gnd inputs. Note that if your 5 Volts ever drops to
4.2 volts or less, the board will act as if a RESET has
occurred. Similarly, if your supply goes to 6 volts or
above, you will damage the components.

Wiring Your Motor Page 69

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Wiring Your Motor

There are two identical connectors used to operate the X and Y motors. The connectors
are labeled with respect to which motor they operate. (This designation affects only which
commands are to be used to control the motors; no other functionality is changed.) They
are wired as follows for the BS0610 and the BS0710 series of controllers (pins counting

from top to bottom):

Pin Name Description

1 GND Ground

2 WB2 Winding B, pin 2

3 WB1 Winding B, pin 1

4 WA2 Winding A, pin 2

5 WA1 Winding A, pin 1

6 GND Ground

This pinout was selected to allow simple reversing of the connector (i.e., take it out and
turn it around) to reverse the direction of the motor if a non-polarized connector is used.

Wiring Your Motor Page 70

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Stepping sequence, testing your connection

The current is run through these connectors to generate a clockwise sequence as follows:

Ste

p

WB2 WB1 WA2 WA1

0 0 0 0 1

1 0 1 0 1

2 0 1 0 0

3 0 1 1 0

4 0 0 1 0

5 1 0 1 0

6 1 0 0 0

7 1 0 0 1

Note also that it is explicitly legal when using the GenStepper firmware to operate your
motor in “double current, ½ power mode”. In “double current” mode, you wire your
motor to both the X and Y motor connectors, and you jumper the board as described in
the „Configuring Double Current‟ mode section of this manual. In all other respects, you
follow the rest of the instructions in this manual.

The actual wiring configuration to connect to a given stepper motor depends on the motor

type. For most unipolar motors, each winding has three leads. The center-tap (shown in
the above schematics as “COMMON-A” or “COMMON-B”) is connected to the GND signal in

the BiStep series controllers, or to +Vm on the SimStep/SS0705 series of controllers. The
other two leads are connected to pins WA-1 and WA-2 or WB-1 and WB-2, as shown in the
above schematics. For bipolar motors, the windings match the labels – that is to say, pins
2-3 are for winding B, and 4-5 are for winding A. Note that the unipolar motors will also
match the labels, but it may be more difficult to identify the windings.

Wiring Your Motor Page 71

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Determining Lead Winding Wire Pairs

If there is no manufacturer‟s wiring diagram available, unipolar and bipolar motor windings
can both often be identified with an ohm-meter by performing tests of their resistances
between the motor leads.

For any motor, number the leads (from 1 to 4 for a bipolar motor, from 1 to 5 or 6 for a

unipolar motor). Then measure the resistances and record the values in the empty cells in
a table like the following:

 1 2 3 4 5 6

1 -

2 - -

3 - - -

4 - - - -

5 - - - - -

6 - - - - - -

For example, the cell at location (1,2) would be filled in with the resistance between leads

1 and 2. The „-„ entries show values which do not need to be separately measured, since
they are already measured in another row/column pair (or are a self-reading). For
example, having measured the resistance between leads 1 and 2 to fill in cell (1,2), there
is no reason to separately measure leads 2 and 1! If you have fewer leads than those
shown in the table, ignore the rows and columns with the nonexistent leads.

For a 4-wire bipolar motor, the low-resistance pairs are the opposite ends of matching
windings; high-resistance pairs are different windings. For example, if cell (1,2) shows 10

ohms, while (1,3) shows greater than 1000 ohms, then wires 1 and 2 can be called
winding A, while wires 3 and 4 can be called winding B.

For a 5-wire unipolar motor, you will observe 2 reading values in the resulting table, with
the higher reading being about double that of the lower reading. The single line which has
the lower reading on all of its entries in the table is the common lead; the other wires are
the winding leads (unfortunately, this test cannot show which is winding A and which is
winding B through resistances alone).

Wiring Your Motor Page 72

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

For a 6-wire unipolar motor, you will observe 3 reading values in the resulting table.

 If you see a single reading near 0, then the two leads associated with that reading
are the common leads, and the remaining 4 wires are the windings WA1, WA2,
WB1 and WB2 (this test cannot determine which is winding A or B through

resistances alone). As a check, you can observe that all readings between the
other wires and either of the 2 common wires have value ½ that of all of the
readings between the non-common wires.

 Otherwise, you will see readings which are near infinity (which identify leads from
different windings), are at some value (such as 10), or are at double that value
(such as 20). The pairs which show the “double value” are the opposite ends of a
given winding (i.e., WA1 and WA2, or WB1 and WB2). The remaining wires are

the “common” leads for their given windings.

A 6-wire 4-phase unipolar motor will have two “common” wires. You will normally connect
one of the wires to pin 1, and the other to pin 6. However, you can often operate a 6-wire
unipolar motor as if it were a 4-wire bipolar motor (when using the BiStep series of
controllers) by insulating the common leads and leaving them disconnected. When it

works, this usually provides more torque for the motor, but it requires double the voltage
(at the same level of current) from the power supply. You cannot operate with this pair of
wires disconnected if they are connected together inside the stepper motor -- if the
resistance between the common leads is very low (less than 10 ohms), such a connection
exists and you must therefore operate using the regular unipolar wiring scheme.

Wiring Your Motor Page 73

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Sequence Testing

Always double check all of your power and motor connections before you apply
power to the system. If you have reversed any power leads, you will blow out
our board and you may blow out your power supply! If you are operating a
unipolar motor and you short a common lead to a winding pin (WA or WB), then

you will blow out our drivers! Similarly, any winding which is shorted to any
other winding may burn out our board. If you are setting up to use double-
power mode (connecting one motor to both the X and Y motor connectors in
order to drive a larger motor), failure to follow the instructions in the
„Configuring Double Current Mode‟ section of this manual will also cause the
board to fail. None of these issues are warranted failures; repairs for such are
not covered!

After winding lines have been determined, identifying a running sequence can be done by
testing the lines using following sequence, connecting to the X motor with clip leads.
Turn off power to the board in between each test, so that power is not on while you
change the wiring.

For wires A, B, C, and D (where A, B, C, and D are initially connected to the WA1, WA2,
WB1, and WB2 lines) try these orders:

 WA1 WA2 WB1 WB2

1. A B C D

2. A B D C

3. A D B C

4. A D C B

5. A C D B

6. A C B D

Wiring Your Motor Page 74

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

For each pattern, request a motor motion in each direction using the applicable technique:

 GenStepper Firmware, using a terminal emulator:

o Issue the command “x1000gi0gi”, which should cause the motor to spin to
logical location 1000, then back to 0. Wait for the “*” response after each

sub-command (the “h”, “x”, “g”, and “i” commands) before typing the next
command, in order to let the firmware finish processing the request.

 NCStepper Firmware, using a terminal emulator:

o Issue the command “1000xg0xgi”, which should cause the motor to spin to
logical location 1000, then back to 0. Wait for the “*” response after each
sub-command (the “h”, “x”, “g”, and “i” commands) before typing the next
command, in order to let the firmware finish processing the request.

Only when the motor is wired correctly will you get smooth motion first in one direction
and then the other.

Once a possible pattern has been determined, you may find that the direction of rotation is
reversed from that desired. To reverse the rotation direction, you can either turn the
connector around (this may be the easiest method, if a SIP style connector is used), or
you can swap both the WA (swap pin 2 with pin 3) and WB pins (swap pin 4 with pin 5).

For example, to reverse

 A B C D, rewire as

 B A D C.

For the purposes of testing, the default power-on rate of 100 ½-steps/second should work

with most motors. Otherwise, use the serial connection to define the precise rate needed.

Single motor, double current mode of operation Page 75

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Single motor, double current mode of operation

When operating a single motor, it is possible to configure the board to operate that motor
at up to 2 times the normal rated current for the board. For example, a single 2 amp
motor can be operated by our BS0610 board (which normally has a top current of 1
amp/winding/motor) if the board is configured as described in this section.

You need to configure the board to send the same signal to the Y motor as is sent to the X
motor (with the internal Y operations ignored). You then wire your motor to BOTH the X
and Y connectors (in exact parallel, so that (for example) WA1 from both the X and Y
connectors is connected to your Winding A, pin 1 of your motor), then the board can
provide double its normal per-winding capacity.

On firmware versions 2.0 and above you configure the board to operate this way by

connecting a 1K resistor (1/4 or 1/8 watt) between the RDY TTL output signal and GND

(on some artworks this may be done through use of the „R1K‟ jumper). Prior firmware
versions use a different technique for this configuration; please refer to the correct manual
for your firmware for details.

You then wire your motor to BOTH the X and Y connectors (as described above); double
the current will be available. Please note that if you do not correctly do the above
wiring, then you will not get the benefit of the double power mode, and the

board is quite likely to fail.

The following two schematics show the wiring for double current mode on both unipolar
and bipolar motors.

Wiring a Unipolar motor for double current mode

COMMON-A and COMMON-B are labeled

as 'GND' on BiStep/BS series boards,

and as '+Vm' on SimStep/SS-series of boards

You also will need to have jumper 'R1K' installed, if it is available.

If it is not available, you will need to connect a 1K resistor between

the RDY output signal and GND.

Unipolar Motor Double Current Mode Connection

To the BiStep/BS and SimStep/SS series of boards.

WA

WB
Motor

U1

6
5
4
3
2
1

X

6
5
4
3
2
1

Y
COMMON-A

COMMON-A

COMMON-A

WA1

WA1

WA1

WA2

WA2

WA2

WB1

WB1

WB1

WB2

WB2

WB2

COMMON-B

COMMON-B

COMMON-B

Single motor, double current mode of operation Page 76

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Wiring a Bipolar motor for double current mode

You also will need to have jumper 'R1K' installed, if it is available.

If it is not available, you will need to connect a 1K resistor between

the RDY output signal and GND.

Bipolar Motor Double Current Mode Connection

To the BiStep/BS series of boards.

WA

WB
Motor

U1

6
5
4
3
2
1

X

6
5
4
3
2
1

Y

GND

GND

GND

GND

WA1

WA1

WA1

WA2

WA2

WA2

WB1

WB1

WB1

WB2

WB2

WB2

Motor Wiring Examples Page 77

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Motor Wiring Examples

The systems have been tested with an interesting mix of stepper motors, both unipolar and
bipolar. All were purchased from Jameco (www.jameco.com). The following sections
summarize some of the motors tested.

The wiring diagrams shown are labeled for the BiStepA05 and SimStepA04. The BS0610 is

identical.

Unipolar Motors

This section shows some unipolar motors which were used. Most will work on any of the
boards currently available from our company. In each case, the wiring is:

Jameco 105873 12 Volt, 0.150 Amp/winding, 3.6 deg/step

This Howard Industries stepping motor has a manufacturing part number of 1-19-4202. It
is wired as:

Color BS0610

Black 1

Brown 2

Red 3

Green 4

White 5

<no connection> 6

http://www.jameco.com)/

Motor Wiring Examples Page 78

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Jameco 151861 5 Volt, 0.55 Amp/winding, 7.5 deg/step

This Airpax motor has a manufacturing part number of C42M048A04. As with the other
Airpax motor, it does not microstep at all. Mode “3o” can smooth its actions, but it does
not “stop” at any other points than ½ step locations. It is wired as:

Color BS0610

Green 1

Black 2

Brown 3

Yellow 4

Orange 5

Red 6

When using a 5 volt motor (such as this), you may use a single, 7.5 volt power supply
(this may slightly over-voltage the motor), or you may use a split supply. In this case,
use a 7.5-12 volt supply for the power to the digital electronics (pins 1 and 4 on the power

connector), and a 6 to 7 volt power supply for the motor (pins 2 and 3 on the power
connector). The TI driver chips being used drop 1.1 to 2 volts (depending on the chip and
the temperature); accordingly, cooling the board becomes quite important, in order to
have stable drive voltages for the motor.

Jameco 155432 12 Volt, 0.4 Amp/winding, 2000 g-cm, 1.8 deg/step

This motor provides for 2000 g-cm of holding torque, and has a manufacturing number of
GBM 42BYG228. Its wiring order is:

Color BS0610

White 1

Brown 2

Yellow 3

Red 4

Blue 5

Black 6

Jameco 162026 12 Volt, 0.6 Amp/winding, 6000 g-cm, 1.8 deg/step

This motor provides for 6000 g-cm(!) of holding torque, and has a manufacturing number
of GBM 57BYGO84. Its wiring order is:

Color BS0610

Black 1

Orange 2

Green 3

Yellow 4

Blue 5

White 6

Motor Wiring Examples Page 79

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Jameco 169201 24 Volt, 0.3 Amp/winding, 1.8 deg/step

This excellent motor has a manufacturing part number of STP-57D317. It uses 6 wires,
with the wiring being:

Color BS0610

Black (Common lead for
PEACH and VIOLET)

1

Peach 2

Violet 3

Yellow 4

Red 5

White (Common lead for
Yellow and White)

6

Jameco 173180 12 Volt, 0.060 Amp/winding, 0.09 deg/step geared

This tiny motor has a manufacturing part number of 30BYJ02AH, BF33. Thanks to its
gearing, it claims to have both a holding and detent torque of 400 g-cm! It uses 5 wires,
already in a connector which directly works with our product. However, two of the wires

must be switched (i.e., the order of the wires is incorrect for our use): the pink and yellow
wires need to be reversed in the connector. The correct order therefore becomes:

Color BS0610

Red 1

Orange 2

Pink 3

Yellow 4

Blue 5

<no connection> 6

Jameco 174553 12 Volt, 0.6 Amp/winding, 7.5 deg/step

This motor has a manufacturing part number of NMB PM55L-048-NBC7. Its wiring is:

Color BS0610

Black (common for Brown

and Red)

1

Brown 2

Red 3

Green 4

Yellow 5

Orange (common for
Yellow and Green)

6

Motor Wiring Examples Page 80

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Bipolar Motors

This section shows some bipolar motors which were used. They only work on the BiStep
products. In each case, the wiring is:

Jameco 117954 5 Volt, 0.8 Amp, 7.5 deg/step

This unit is an Airpax LB82773-M1 2 phase bipolar stepping motor. This motor does NOT
microstep at all. It may only be used in full and half step modes (i.e. use the
configuration commands “0o”, “1o” and “2o”)! Mode “o3” may smooth its steps slightly,
but it will not really stop at any other than ½ step locations.

When using a 5 volt motor (such as this), you may use a single, 7.5 volt power supply

(this may slightly over-voltage the motor), or you may use a split supply. In this case,
use a 7.5-12 volt supply for the power to the digital electronics (pins 1 and 4 on the power
connector), and a 6 to 7 volt power supply for the motor (pins 2 and 3 on the power
connector). The TI driver chips being used drop 1.1 to 2 volts (depending on the chip and
the temperature); accordingly, cooling the board becomes quite important, in order to
have stable drive voltages for the motor.

The wiring of this unit is therefore:

Color BS0610

<no connection> 1

Yellow 2

Black 3

Red 4

Gray 5

<no connection> 6

Motor Wiring Examples Page 81

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Jameco 155459 12 Volt, 0.4 Amp, 2100 g-cm, 1.8 deg/step

This unit is a GBM 42BYG023 stepping motor, which provides for 2100 g-cm of holding
torque. It may be wired as:

Color BS0610

<no connection> 1

Brown 2

Orange 3

Yellow 4

Red 5

<no connection> 6

Jameco 163395 8.4 Volt, 0.28 Amp, 0.9 deg/step

This is a Scotts Valley 5017-935 stepper motor. It may be wired as:

Color BS0610

<no connection> 1

Yellow 2

White 3

Blue 4

Red 5

<no connection> 6

 Page 82

BS0610/BS0710 Motor Controllers Peter Norberg Consulting, Inc.

Jameco 168831 12 Volt, 1.25 Amp

This motor is a Superior Electric “SLO-SYN” stepping motor, model number SM-200-0050-
HL. We ordered it since it stated “1 amp”; however, it turns out to be a 1.25 amp
product, and therefore will cause the BS0610 to overheat (and probably fail) after just a
short period of use, if the BS0610 is configured for the default operation of running two

motors at a time. We tested it with the wiring of:

Color BS0610

<no connection> 1

White/Brown 2

Brown 3

White/Yellow 4

Yellow 5

<no connection> 6

In order to operate this motor with any of our BiStep units which do not directly handle its
current level, you must configure the BiStep to operate in "Single Motor Double Current"

Mode. This feature is only available with GenStepper firmware versions 1.59 and later. To
do this, you jumper the board as described in the „Configuring Double Current‟ mode
section of this manual, and you connect the X and Y connectors in parallel to the motor.
For example, the "WA1" connection from the Y connector and the "WA1" from the X
connector must both be connected to the yellow wire of the motor.

If you fail to wire the unit correctly, you will be shorting power to ground, and
are likely to burn up the board! This is not a warranted failure!

